ÒÑÖªÖ±Ïßy=2x+4·Ö±ðÓëxÖá¡¢yÖá½»ÓÚA£¬B£¬ÓëË«ÇúÏßy=
k
x
ÔÚµÚÒ»ÏóÏÞ½»ÓÚC£¨1£¬m£©£®
£¨1£©ÇóµãB¡¢µãCµÄ×ø±ê¼°kµÄÖµ£»
£¨2£©ÎÊÔÚË«ÇúÏßy=
k
x
ÉÏÇÒÔÚÖ±Ïßy=2x+4µÄÏ·½£¬ÊÇ·ñ´æÔÚµãM£¬Ê¹¡÷MABµÃÃæ»ýµÈÓÚ¡÷ABOµÄÃæ»ýµÄ2±¶£¿Èô´æÔÚ£¬Çó³öMµãµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©µãPÊÇË«ÇúÏßy=
k
x
µÚÒ»ÏóÏÞÉϵ͝µã£¬QÊÇÖ±Ïßy=2x+4Éϵ͝µã£¬Èô¡÷BPQÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£®
¿¼µã£º·´±ÈÀýº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉÖªBµãµÄ×Ý×ø±êΪ4£¬CµãµÄºá×ø±êΪ1£¬·Ö±ð´úÈëÖ±Ïß·½³Ì¿ÉÇóµÃÁ½µãµÄ×ø±ê£¬ÔÙ°ÑCµã×ø±ê´úÈëË«ÇúÏß½âÎöʽ¿ÉÇóµÃkµÄÖµ£»
£¨2£©¡÷MABºÍ¡÷ABOÖÐABΪµ×£¬Ö»Òª¸ßÂú×ã2±¶¹ØÏµ¼´¿É£¬¹ýO×÷³ö¡÷ABOµÄAB±ßÉϵĸߣ¬ÀûÓöԳÆÐÔ£¬×÷³öD¹ØÓÚOµãµÄ¶Ô³ÆµãE£¬¹ýEºÍABƽÐеÄÖ±ÏßÓëË«ÇúÏߵĽ»µã¼´ÎªËùÇóµÄMµã£¬ÀûÓÃÇó½»µã×ø±êµÄ·½·¨¿É½â³öMµÄ×ø±ê£»
£¨3£©µ±¡ÏPBQΪֱ½Çʱ£¬¹ýµãBÇÒ´¹Ö±ABµÄÖ±ÏßÓëË«ÇúÏߵĽ»µã¼´Âú×ãÌâÒ⣬µ±¡ÏPQBΪֱ½Çʱ£¬Ôò¹ýBµÄÖ±ÏßÓëÖ±ÏßABµÄ¼Ð½ÇΪ45¡ã¼´¿É£¬Çó³öÏàÓ¦Ö±Ïß·½³Ì£¬ÁªÁ¢·½³Ì×éÇó½â¼´¿É£®
½â´ð£º½â£º£¨1£©ÔÚy=2x+4ÖУ¬Áîx=0£¬½âµÃ£ºy=4£¬
ÔòBµÄ×ø±êÊÇ£¨0£¬4£©£¬
Áîx=1£¬½âµÃ£ºy=6£¬
ÔòCµÄ×ø±êÊÇ£¨1£¬6£©£¬
°Ñ£¨1£¬6£©´úÈëy=
k
x
ÖУ¬µÃ£ºk=6£»
£¨2£©ÔÚy=2x+4ÖУ¬Áîy=0£¬½âµÃ£ºx=-2£¬
ÔòAµÄ×ø±êÊÇ£¨-2£¬0£©£®
Èçͼ1£¬¹ýO×÷OD¡ÍABÓÚµãD£¬ÔòÖ±ÏßODµÄ½âÎöʽÊÇy=-
1
2
x£¬

          ͼ1
¸ù¾ÝÌâÒâµÃ£º
y=2x+4
y=-
1
2
x
£¬
½âµÃ£º
x=-
8
5
y=
4
5
£¬
ÔòDµÄ×ø±êÊÇ£¨-
8
5
£¬
4
5
£©£¬D¹ØÓÚOµÄ¶Ô³ÆµãÊÇE£¨
8
5
£¬-
4
5
£©£¬
¾­¹ýEÇÒÆ½ÐÐÓÚABµÄÖ±ÏߵĽâÎöʽÊÇ£ºy=2x+c£¬Ôò-
4
5
=
16
5
+c£¬
½âµÃ£ºc=-4£¬
Ôò½âÎöʽÊÇy=2x-4£®
¸ù¾ÝÌâÒâµÄ£º
y=2x-4
y=
6
x
£¬
½âµÃ£º
x=3
y=2
»ò
x=-1
y=-6
£¬
ÔòMµÄ×ø±êÊÇ£¨3£¬2£©»ò£¨-1£¬-6£©£»
£¨3£©µ±¡ÏPBQ=90¡ãʱ£¬ÔòÓÐBP¡ÍAB£¬
Èçͼ2£¬¹ýµãB×÷BP¡ÍAB£¬½»Ë«ÇúÏßÓÚµãP£¬

´ËʱÔÚÖ±ÏßABÉÏ´æÔÚÂú×ãÌõ¼þµÄQµã£¬
´ËʱֱÏßBP·½³ÌΪ£ºy=-
1
2
x+4£¬
ÁªÁ¢Ë«ÇúÏß·½³ÌµÃ£º
y=-
1
2
x+4
y=
6
x
£¬
½âµÃ£º
x=2
y=3
»ò
x=1
y=6
£¬¼´´ËʱPµãµÄ×ø±êΪ£¨2£¬3£©»ò£¨1£¬6£©£»
µ±¡ÏBQP=90¡ãʱ£¬Èçͼ3£¬¹ýBµã×÷Ö±ÏßBP£¬Ê¹Ö±ÏßBPÓëÖ±ÏßABµÄ¼Ð½ÇΪ45¡ã£¬½»Ë«ÇúÏßÓÚµãP£¬½»xÖáÓÚµãD£¬´ËʱÔÚÖ±ÏßABÉÏ´æÔÚÂú×ãÌõ¼þµÄQµã£¬

Ôò¡Ï1=¡Ï2+¡Ï3=¡Ï2+45¡ã£¬
ËùÒÔtan¡Ï1=tan£¨¡Ï2+45¡ã£©=
1+tan¡Ï2
1-tan¡Ï2
£¬
ÓÖtan¡Ï1=
OB
OA
=
4
2
=2£¬ËùÒÔ
1+tan¡Ï2
1-tan¡Ï2
=2£¬
½âµÃtan¡Ï1=
1
3
£¬ËùÒÔÖ±ÏßBPµÄ·½³ÌΪ£ºy=
1
3
x+4£¬
ÁªÁ¢Ë«ÇúÏß·½³ÌµÃ£º
y=
1
3
x+4
y=
6
x
£¬
½âµÃ£º
x=3
6
-6
y=
6
+2
»ò
x=-3
6
-6
y=-
6
+2
£¨ÒòΪPµãÔÚµÚÒ»ÏóÏÞ£¬¹ÊÉáÈ¥£©£¬
´ËʱPµãµÄ×ø±êΪ£¨3
6
-6£¬
6
+2£©£»
µ±¡ÏBPQ=90¡ãʱ£¬Í¬Àí¿ÉÇóµÃPµã×ø±êÈÔΪ£¨3
6
-6£¬
6
+2£©£»
×ÛÉÏ¿ÉÖªÂú×ãÌõ¼þµÄPµãµÄ×ø±êΪ£º£¨2£¬3£©»ò£¨1£¬6£©»ò£¨3
6
-6£¬
6
+2£©£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é·´±ÈÀýº¯ÊýÓëÒ»´Îº¯Êý×ÛºÏÓ¦Óã¬ÔÚµÚ£¨2£©¡¢£¨3£©ÖÐÈ·¶¨³öËùÇóµãµÄλÖÃÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Å×ÎïÏßy=-£¨x-2£©2+3µÄ¶¥µã×ø±êΪ£¨¡¡¡¡£©
A¡¢£¨0£¬3£©
B¡¢£¨-2£¬3£©
C¡¢£¨0£¬1£©
D¡¢£¨2£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÃÕý·½ÐÎȦ³öijÔ·ݵÄÔÂÀú9¸öÊý£¬Éè×îÖмäÒ»¸öÊÇx£¬ÔòÓÃx±íʾÕâ9¸öÊýµÄºÍÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
A¡¢µ¹ÊýºÍËü±¾ÉíÏàµÈµÄÊý£¬Ö»ÓÐ1ºÍ-1
B¡¢Ïà·´ÊýÓë±¾ÉíÏàµÈµÄÊýÖ»ÓÐ0
C¡¢Á¢·½µÈÓÚËü±¾ÉíµÄÊýÖ»ÓÐ0¡¢1ºÍ-1
D¡¢¾ø¶ÔÖµµÈÓÚ±¾ÉíµÄÊýÊÇÕýÊý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¹ØÓÚxµÄ·½³Ìx2-2x+k-1=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬ÔòkµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆËã-£¨-3£©2µÄ½á¹ûÊÇ£¨¡¡¡¡£©
A¡¢6B¡¢-6C¡¢9D¡¢-9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆËãÌ⣺
£¨1£©£¨-5£©-£¨+4£©+£¨-8£©-£¨+7£©+£¨+24£©£»
£¨2£©-42¡Â4¡Á£¨-
1
4
£©+2¡Á£¨-3£©-|-5|£»
£¨3£©-5-[£¨-2£©3+£¨1-0.8¡Á
3
4
£©]¡Â£¨-2£©£»
£¨4£©£¨-
1
6
-
1
24
+
3
4
-
1
12
£©¡Á£¨-48£©+£¨-1£©2013£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÉËÄÉáÎåÈë·¨µÃµ½µÄ½üËÆÊý8.8¡Á105¾«È·µ½
 
λ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£ºÈçͼ£¬ÔڵȱßÈý½ÇÐÎABCÖУ¬M¡¢N·Ö±ðÊÇAB¡¢ACµÄÖе㣬DÊÇMNÉÏÈÎÒâÒ»µã£¬CD¡¢BDµÄÑÓ³¤Ïß·Ö±ðÓëAB¡¢AC½»ÓÚF¡¢E£¬Èô
1
CE
+
1
BF
=
1
a
£¨a£¾0£©£¬Ôò¡÷ABCµÄ±ß³¤Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸