½â´ð£º½â£º£¨1£©ÔÚy=2x+4ÖУ¬Áîx=0£¬½âµÃ£ºy=4£¬
ÔòBµÄ×ø±êÊÇ£¨0£¬4£©£¬
Áîx=1£¬½âµÃ£ºy=6£¬
ÔòCµÄ×ø±êÊÇ£¨1£¬6£©£¬
°Ñ£¨1£¬6£©´úÈëy=
ÖУ¬µÃ£ºk=6£»
£¨2£©ÔÚy=2x+4ÖУ¬Áîy=0£¬½âµÃ£ºx=-2£¬
ÔòAµÄ×ø±êÊÇ£¨-2£¬0£©£®
Èçͼ1£¬¹ýO×÷OD¡ÍABÓÚµãD£¬ÔòÖ±ÏßODµÄ½âÎöʽÊÇy=-
x£¬

ͼ1
¸ù¾ÝÌâÒâµÃ£º
£¬
½âµÃ£º
£¬
ÔòDµÄ×ø±êÊÇ£¨-
£¬
£©£¬D¹ØÓÚOµÄ¶Ô³ÆµãÊÇE£¨
£¬-
£©£¬
¾¹ýEÇÒÆ½ÐÐÓÚABµÄÖ±ÏߵĽâÎöʽÊÇ£ºy=2x+c£¬Ôò-
=
+c£¬
½âµÃ£ºc=-4£¬
Ôò½âÎöʽÊÇy=2x-4£®
¸ù¾ÝÌâÒâµÄ£º
£¬
½âµÃ£º
»ò
£¬
ÔòMµÄ×ø±êÊÇ£¨3£¬2£©»ò£¨-1£¬-6£©£»
£¨3£©µ±¡ÏPBQ=90¡ãʱ£¬ÔòÓÐBP¡ÍAB£¬
Èçͼ2£¬¹ýµãB×÷BP¡ÍAB£¬½»Ë«ÇúÏßÓÚµãP£¬

´ËʱÔÚÖ±ÏßABÉÏ´æÔÚÂú×ãÌõ¼þµÄQµã£¬
´ËʱֱÏßBP·½³ÌΪ£ºy=-
x+4£¬
ÁªÁ¢Ë«ÇúÏß·½³ÌµÃ£º
£¬
½âµÃ£º
»ò
£¬¼´´ËʱPµãµÄ×ø±êΪ£¨2£¬3£©»ò£¨1£¬6£©£»
µ±¡ÏBQP=90¡ãʱ£¬Èçͼ3£¬¹ýBµã×÷Ö±ÏßBP£¬Ê¹Ö±ÏßBPÓëÖ±ÏßABµÄ¼Ð½ÇΪ45¡ã£¬½»Ë«ÇúÏßÓÚµãP£¬½»xÖáÓÚµãD£¬´ËʱÔÚÖ±ÏßABÉÏ´æÔÚÂú×ãÌõ¼þµÄQµã£¬

Ôò¡Ï1=¡Ï2+¡Ï3=¡Ï2+45¡ã£¬
ËùÒÔtan¡Ï1=tan£¨¡Ï2+45¡ã£©=
£¬
ÓÖtan¡Ï1=
=
=2£¬ËùÒÔ
=2£¬
½âµÃtan¡Ï1=
£¬ËùÒÔÖ±ÏßBPµÄ·½³ÌΪ£ºy=
x+4£¬
ÁªÁ¢Ë«ÇúÏß·½³ÌµÃ£º
£¬
½âµÃ£º
»ò
£¨ÒòΪPµãÔÚµÚÒ»ÏóÏÞ£¬¹ÊÉáÈ¥£©£¬
´ËʱPµãµÄ×ø±êΪ£¨3
-6£¬
+2£©£»
µ±¡ÏBPQ=90¡ãʱ£¬Í¬Àí¿ÉÇóµÃPµã×ø±êÈÔΪ£¨3
-6£¬
+2£©£»
×ÛÉÏ¿ÉÖªÂú×ãÌõ¼þµÄPµãµÄ×ø±êΪ£º£¨2£¬3£©»ò£¨1£¬6£©»ò£¨3
-6£¬
+2£©£®