精英家教网 > 初中数学 > 题目详情
5.如图,在正方形ABCD中,AB=8,Q是CD的中点,在CD上取一点P,使∠BAP=2∠DAQ,则CP的长度等于(  )
A.1B.2C.3D.$\sqrt{3}$

分析 取BC的中点E,连接AE,作EF⊥AP,证明△ABE≌△AFE,得EF=BE=EC,得△EFP≌△ECP,得△ECP∽△ABE.即可求CP的长度.

解答 解:取BC的中点E,连接AE,作EF⊥AP,
则△ABE≌△ADQ,得EB=EC=4,
由$\left\{\begin{array}{l}{AE=AE}\\{∠EFA=∠EBA}\\{∠BAE=∠FAE}\end{array}\right.$,
得:△ABE≌△AFE,
∴∠AEB=∠AEF,
得EF=EB=EC,
∵PE=PE,
∴∠ECP=∠EFP=90°,
∴△EPC≌△EPF,
∴∠FEP=∠PEC,
∴∠AEP=∠AEF+∠FEP=90°,
∴∠PEF=∠PEC=∠EAP=∠EAB,
∴△CEP∽△BAE,
∴$\frac{PC}{EC}$=$\frac{BE}{AB}$=$\frac{4}{8}$=$\frac{1}{2}$,
即PC=2,
故选B

点评 本题考查的是全等三角形的判定,相似三角形对应边相等的性质,考查了正方形各边相等,且各内角均为直角的性质,本题求证△AEP是直角三角形是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.小明家有一块三角形的土地,如图所示,其三边长AB=70米,BC=90米,AC=50米,现要把△ABC分成面积比为5:7:9的三部分,分别种植不同的农作物,请你设计一种方案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知函数y=$\frac{x-3}{2x+1}$.求:
(1)当x=1,-1时的函数值;
(2)当x为何值时,函数y等于1,-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图①,在△ABC外作△BAD、△CAE,使∠BAD=∠CAE=90°,AB=AD,AC=AE.
(1)如图②,在图①的基础上作平行四边形ADFE,取BD中点P,连接PF、PC,试猜想PF与PC的数量关系和位置关系,并说明理由;
(2)如图③,在图①的基础上把△CAE沿边AC翻折,作平行四边形ABFE1,取BD中点P,连接PF、PC,在图③中按要求补全图形,并判断此时PF与PC的数量关系和位置关系,直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图所示,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段ME、AE、BE之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是(  )
A.4B.8C.16D.无法计算

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是(  )
A.64B.16C.24D.32

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点,点F是x轴上一点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5-$\frac{3}{5}x$(0≤x≤5),给出以下四个结论:①OA=5;②AF=1;③BF=5;④OB=3.其中正确结论的序号是①③.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.为了测试某种汽车在高速路上匀速行驶的耗油量,专业测试员将汽车加满油,对汽车行驶中的情况做了记录,并把试验的数据制成如下表所示:
汽车行驶时间x(h)0123
剩余油量y(L)60524436
(1)根据上表的数据,请用x表示y,y=60-8x.
(2)若油箱中的剩余油量为20升,汽车行驶了多少小时?
(3)若该汽车贮满汽油准备从高速路出发,要匀速前往需要7小时车程的某目的地,当余油量不足5升时,油箱将会报警,请问汽车能在油箱报警之前到达目的地吗?请说明理由.

查看答案和解析>>

同步练习册答案