精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数的图象经过点(3,0),对称轴是直线x=﹣2,与y轴的交点(0,﹣3).

(1)求抛物线与x轴的另一个交点坐标;

(2)求抛物线的解析式.

【答案】(1)(﹣7,0)(2)y=x2+x﹣3

【解析】

(1)根据抛物线的对称性确定抛物线与x轴的另一个交点坐标;

(2)设交点式y=a(x+7)(x-3),然后把(0,-3)代入求出a即可.

(1)∵抛物线与x轴的一个交点坐标为(3,0),对称轴是直线x=-2,

∴抛物线与x轴的另一个交点坐标为(-7,0);

(2)设抛物线解析式为y=a(x+7)(x-3),

把(0,-3)代入得a(0+7)(0-3)=-3,解得a=

∴抛物线解析式为y=(x+7)(x-3),

y=x2+x-3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,点DBC边上的中点,GAC边上一点,过GEFBC,交BC于点E,交BA的延长线于点F.

1)求证:ADEF

2)求证:AFG是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,垂足分别为QS

1)试说明:

2)若QS=3.5cmNQ=2.1cm ,MS的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了丰富学生的课外生活,根据实际情况开设特色活动课,有A:合唱团,B:话剧社,C:舞蹈,D:美术四种项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中信息解答下列问题:

1)这次调查中总共抽取了_______人,在扇形统计图中,表示B话剧社所对应的圆心角是_______度;

2)把条形统计图补充完整.

3)已知该校有2000人,估计全校喜欢话剧的人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,内接于且与的延长线交于点

判断的位置关系,并说明理由;

,求的长;

条件下求阴影部分的面积.(结果可含).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种成本为每台20元的台灯,规定销售单价不低于成本价,又不高于每台32元.销售中平均每月销售量y(台)与销售单价x(元)的关系可以近似地看做一次函数,如下表所示:

x

22

24

26

28

y

90

80

70

60

(1)请直接写出y与x之间的函数关系式;

(2)为了实现平均每月375元的台灯销售利润,这种台灯的售价应定为多少?这时每月应购进台灯多少个?

(3)设超市每月台灯销售利润为ω(元),求ω与x之间的函数关系式,当x取何值时,ω的值最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在△ABC中,∠B<∠CADAE分别是△ABC的高和角平分线,

1)若∠B30°,∠C50°.则∠DAE的度数是   .(直接写出答案)

2)写出∠DAE、∠B、∠C的数量关系:   ,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?

(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).

(1)求此抛物线的表达式;

(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.

查看答案和解析>>

同步练习册答案