【题目】如图,△ABC中,AC=AD,BC=BE,∠ACB=100°,则∠ECD=( )
A.20°B.30°C.40°D.50°
【答案】C
【解析】
首先设∠ACE=x°,∠DCE=y°,∠BCD=z°,由BE=BC,AD=AC,利用等腰三角形的性质,即可用x,y,z表示出∠ADC与∠BEC的度数,又由三角形外角的性质,得到∠A与∠B的值,然后由在△ABC中,∠ACB=100°,利用三角形内角和定理得到方程,继而求得∠DCE的大小.
设∠ACE=x°,∠DCE=y°,∠BCD=z°,
∵BE=BC,AD=AC,
∴∠ADC=∠ACD=∠ACE+∠DCE=(x+y)°,∠BEC=∠BCE=∠BCD+∠DCE=(y+z)°,
∴∠A=∠BEC﹣∠ACE=(y+z﹣x)°,∠B=∠ADC﹣∠BCD=(x+y﹣z)°,
∵在△ABC中,∠ACB=100°,
∴∠A+∠B=180°﹣∠ACB=80°,
∴y+z﹣x+x+y﹣z=80,
即2y=80,
∴y=40,
∴∠DCE=40°.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,中,平分交于点,在上截取,过点作交于点.求证:四边形是菱形;
如图,中,平分的外角交的延长线于点,在的延长线上截取,过点作交的延长线于点.四边形还是菱形吗?如果是,请证明;如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形的面积为,对角线,交于点,点,,,分别是,,,的中点,连接,,,得到菱形;点,,,分别是,,,的中点,连接,,,,得到菱形;…,依此类推,则菱形的面积为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.
(1)求证:△ABE≌△CDF;
(2)若AC与BD交于点O,求证:AO=CO.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是过A的一条直线, 且B、C在AE的异侧, BD⊥AE于D, CE⊥AE于E.
(1)求证: BD=DE+CE.
(2)若直线AE绕A点旋转到图②位置时(BD<CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请给予证明;
(3)若直线AE绕A点旋转到图③位置时(BD>CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请直接写出结果, 不需证明.
(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求证:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于点E,F.
(1)求证:AF⊥EF.
(2)探究线段AF、CF、AB之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中有,两点,现从、、、四点中,任选两点作为、,则以、、、四个点为顶点所组成的四边形中是平行四边形的概率是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过件,单价为元;如果一次性购买多于件,那么每增加件,购买的所有服装的单价降低元,但单价不得低于元.按此优惠条件,小明一次性购买这种服装(为正整数)件,支付元.
当时,小明购买的这种服装的单价为________元;
写出关于的函数表达式,并给出自变量的取值范围;
小明一次性购买这种服装付了元,请问他购买了多少件这种服装?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com