【题目】画图并填空:
①画出图中△ABC的高AD(标注出点D的位置);
②画出把△ABC沿射线AD方向平移2cm后得到的△A1B1C1;
③根据“图形平移”的性质,得BB1=_____cm,AC与A1C1的位置关系是_____,数量关系是:________.
科目:初中数学 来源: 题型:
【题目】如图,AM∥BN,BC是∠ABN的平分线.
(1)过点A作AD⊥BC,垂足为O,AD与BN交于点D. (要求:用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)
(2)求证:AC=BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB= ,AC=5,tanA=2,D是BC中点,点P是AC上一个动点,将△BPD沿PD折叠,折叠后的三角形与△PBC的重合部分面积恰好等于△BPD面积的一半,则AP的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
A.① B.② C.②③ D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB,构成∠PAC、∠APB、∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°)
(1)当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?若不成立,试写出∠PAC、∠APB、∠PBD三个角的等量关系(无需说明理由);
(3)当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,写出你发现的一个结论并加以说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:
周次 组别 | 一 | 二 | 三 | 四 | 五 | 六 |
甲组 | 12 | 15 | 16 | 14 | 14 | 13 |
乙组 | 9 | 14 | 10 | 17 | 16 | 18 |
(1)请根据上表中的数据完成下表.(注:方差的计算结果精确到0.1)
平均数 | 中位数 | 方差 | |
甲组 | |||
乙组 |
(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图.
(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况进行简要评价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若这个方程有一个根为﹣2,求k的值和方程的另一个根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧.
点是直线上一点,在同一平面内,乐乐他们把一个等腰直角三角板任意放,其中直角顶点与点重合,过点作直线,垂足为点,从过点作,垂足为点.
(1)当直线,位于点的异侧时,如图1,线段,,之间的数量关系___(不必说明理由);
(2)当直线,位于点的右侧时,如图2,判断线段,,之间的数量系,并说明理由;
(3)当直线,位于点的左侧时,如图3,请你补全图形,并直接写出线段,,之间的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com