【题目】利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性.
(1)根据下列所示图形写出一个代数恒等式 .
(2)已知正数a,b,c和m,n,l,满足ambnclk,试构造边长为k的正方形,利用图形面积来说明albmcnk2.
思考过程如下:
因为ambnclk,所以a,b,c,m,n,l,均 k(填“大于”或“小于”).由于k2可以看成一个正方形的面积,则al、bm、cn可以分别看成三个长方形的面积.请画出图形,并利用图形面积来说明albmcnk2.
【答案】(1);(2)小于,理由见详解.
【解析】
(1)先分别表示出大正方形的面积为,小正方形面积为,阴影部分面积为,再根据小正方形的面积+4个长方形的面积=大正方形面积,即可得到答案;
(2)利用面积分割法,构造正方形,使其边长等于ambnclk,(a≠b≠c,m≠n≠l),并且正方形里有边长为a,l;b,m;c,n的长方形,进而通过正方形,即可得到albmcnk2.
(1)∵小正方形的面积+4个长方形的面积=大正方形面积,
∴.
故答案是:;
(2)构造一个边长为k的正方形,如图所示:显然满足:ambnclk,
根据图形可知,正方形内部3个长方形的面积之和小于正方形的面积,即:albmcnk2.
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y1=的图象与一次函数:y2=ax+b的图象相交于点A(1,4)、B(m,﹣2)
(1)求出反比例函数和一次函数的关系式;
(2)观察图象,直按写出使得y1<y2成立的自变量x的取值范围;
(3)如果点C是x轴上的点,且△ABC的面积面积为6,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD和正方形CEFC中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.
(1)求证:HC=HF.
(2)求HE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,于点D,点E是直线AC上一动点,连接DE,过点D作,交直线BC于点F.
探究发现:
如图1,若,点E在线段AC上,则______;
数学思考:
如图2,若点E在线段AC上,则______用含m,n的代数式表示;
当点E在直线AC上运动时,中的结论是否任然成立?请仅就图3的情形给出证明;
拓展应用:若,,,请直接写出CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.
(1)求k的取值范围;
(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,AC平分DAB,12,试说明AB与CD的位置关系,并予以证明:
(2)如图2,在(1)的结论下,AB的下方点P满足ABP30,G是CD上任一点,PQ平分BPG,PQ∥GN,GM平分DGP,下列结论:
①DGPMGN的值不变;
②MGN的度数不变.
可以证明,只有一个是正确的,请你做出正确的选择并求值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46;B:46.5~53.5;C:53.5﹣60.5:D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题.
(1)这次一共抽取了 名学生,并补全频数直方图;
(2)C组学生的人数所占的百分比为 ;
(3)在扇形统计图中D组的圆心角是 度;
(4)请你估计该校初三年级体重超过60kg的学生大约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE.
(1)求证:DE=DC.
(2)如图2,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC的延长线于点G.试探究线段DF、DG的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,数轴上点在原点左边,到原点的距离为8个单位长度,点在原点的右边,从点走到点,要经过32个单位长度.
(1)求、两点所对应的数;
(2)若点也是数轴上的点,点到点的距离是点到原点的距离的3倍,求点对应的数;
(3)已知,点从点向右出发,速度为每秒1个单位长度,同时点从点向右出发,速度为每秒2个单位长度,若点到点的距离与点到原点距离相等,则点到原点距离与点到点的距离与值是否变化?若不变,求其值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com