分析 在直角△CDF中利用三角函数求得∠DFC的度数,则∠ADF即可求得,进而求得∠ADE的度数;在直角△CDF中利用勾股定理求得CF的长,根据BF=BC-CF即可求得.
解答 解:根据题意得DF=AD=12,
∵在直角△CDF中,sin∠DFC=$\frac{CD}{DF}$=$\frac{6}{12}$=$\frac{1}{2}$,
∴∠DFC=30°,
∴∠DFC=30°,
∵平行四边形ABCD中,∠ADF=∠DFC=30°,
∴∠ADE=∠EDF=$\frac{1}{2}$∠ADF=$\frac{1}{2}$×30=15°.
在直角△CDF中,CF=$\sqrt{D{F}^{2}-C{D}^{2}}$=$\sqrt{1{2}^{2}-{6}^{2}}$=6$\sqrt{3}$,
则BF=BC-CF=12-6$\sqrt{3}$.
故答案是:15°,12-6$\sqrt{3}$.
点评 此题考查了翻折变换(折叠问题),矩形的性质,以及直角三角形的性质,熟练掌握折叠的性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 3 | C. | $\sqrt{3}$ | D. | 6 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 14 | B. | 16 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\frac{4\sqrt{5}}{3}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com