精英家教网 > 初中数学 > 题目详情

【题目】如图所示,天津电视塔顶部有一桅杆部分AB,数学兴趣小组的同学在距地面高为4.2m的平台D处观测电视塔桅杆顶部A的仰角为67.3°,观测桅杆底部B的仰角为58°.已知点A,B,C在同一条直线上,EC=172m.求测得的桅杆部分AB的高度和电视塔AC的高度.(结果保留小数点后一位).

参考数据:tan67.3°2.39,tan60°1.73.

【答案】桅杆部分AB的高度为135.9m,电视塔AC的高度为415.3m.

【解析】分析:

如下图过点DDF⊥AC于点F,由已知易得四边形DECF是矩形,由此可得DF=EC=172m,DE=CF=4.2m,然后在Rt△ADFRt△BDF中结合已知条件求得AFBF的长,即可由AB=AF-BFAC=AF+CF求得ABAC的长了.

详解:

如图,作DF⊥AC于点F,

∵DF∥EC,DE∥CF,DE⊥EC,

∴四边形DECF是平行四边形,∠DEC=90°,

四边形DECF是矩形,

∴DF=EC=172mDE=CF=4.2m,

∵∠ADF=67.3°,∠BDF=58°,

Rt△ADF中,AF=DFtan67.3°≈411.1m,

Rt△BDF中,BF=DFtan58°≈275.2m,

∴AB=AF﹣BF=411.1﹣275.2=135.9m,

AC=AF+CF=411.1+4.2=415.3m.

答:桅杆部分AB的高度为135.9m,天塔AC的高度为415.3m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=ACDBA延长线上的一点,点EAC的中点.

(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).

①作∠DAC的平分线AM

②连接BE并延长交AM于点F

③连接FC.

(2)猜想与证明:猜想四边形ABCF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知整数a1a2a3a4,……滿足下列条件:a1=0a2=-a1+1│,a3=-a2+2│,a4=-a3+3│,·……,依次类推,则a2017的值为

A.-1007B.-1008C.-1009D.-2016

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形纸片ABCD中,AB=2,A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则cosEFG的值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC和△DBC中,∠ACB=∠DBC=90°,点E是BC的中点,EF⊥AB,垂足为F,且AB=DE.

(1)求证:△BCD是等腰直角三角形;

(2)若BD=8厘米,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为创建足球特色学校,营造足球文化氛围,某学校随机抽取部分八年级学生足球运球的测试成绩作为一个样本,按ABCD四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8—10分,B级:7—7.9分,C级:6—6.9分,D级:1—5.9分)根据所给信息,解答以下问题:

(1)样本容量为 C对应的扇形的圆心角是____度,补全条形统计图;

(2)所抽取学生的足球运球测试成绩的中位数会落在____等级;

(3)该校八年级有300名学生,请估计足球运球测试成绩达到级的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4 cm,BC=8 cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P,Q的速度的速度都是1 cm/s,连结PQ,AQ,CP,设点P,Q运动的时间为t(s).

(1)当t为何值时,四边形ABQP是矩形?

(2)当t为何值时,四边形AQCP是菱形?

(3)分别求出(2)中菱形AQCP的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+ x+cx轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣ x﹣4x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点PPEx轴,垂足为E,交直线l于点F.

(1)试求该抛物线表达式;

(2)求证:点C在以AD为直径的圆上;

(3)是否存在点P使得四边形PCOF是平行四边形,若存在求出P点的坐标,不存在请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一副直角三角板如图放置,点C在FD的延长线上,ABCF,F=ACB=90°,E=45°,A=60°,AC=10,试求CD的长.

查看答案和解析>>

同步练习册答案