精英家教网 > 初中数学 > 题目详情

【题目】如图1,直线MN//直线PQ,点AB分别是直线MNPQ上的两点.将射线AM绕点A顺时针匀速旋转,射线BQ绕点B顺时针匀速旋转,旋转后的射线分别记为AM′、BQ′,已知射线AM、射线BQ旋转的速度之和为7度/秒.

(1)如果射线BQ 先转动30°后,射线AM、BQ′再同时旋转10秒时,射线AM′与BQ′第一次出现平行.求射线AM、BQ的旋转速度;

(2)若射线AMBQ分别以(1)中速度同时转动t秒,在射线AM′与AN重合之前,求t为何值时AM′⊥BQ′;

(3)若∠BAN=45°,射线AMBQ分别以(1)中的速度同时转动t秒,在射线AM′与AN重合之前,射线AM′与BQ′交于点H,过点HHCPQ,垂足为C,如图2所示,设∠BAH=α∠BHC=β,求αβ满足的数量关系,直接写出结果.

【答案】(1) 射线AM、BQ的旋转速度分别为5/秒、2/;(2) 30秒;(3) 当时,45°.

【解析】1)设射线AM、BQ的旋转速度分别为x/秒、y/秒,根据速度之和等于7,以及射线AM、BQ的旋转角度相等列方程组求解即可;

(2)根据AMBQ垂直,可得,求解即可;

(3)根据题意得延长AMBQ交于M′,易得∠A M′B=45°-α,HBC=90°-β,A MBQ,从而求得结论.

(1)设射线AM、BQ的旋转速度分别为x/秒、y/秒,根据题意得:

,解得

答:射线AM、BQ的旋转速度分别为5/秒、2/.

(2)由AMBQ垂直,,

,

答:30秒时AMBQ

(3)易得如图,延长AMBQ交于M′,

PQMN,

∴∠AM′B=N AM′=45°-α,

HCPQ,

∴∠HBC=90°-BHC=90°-β,

AMBQ′,

∴∠HBC+AM′B=90°,

90°-β+45°-α=90°,即α+β=45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2 ,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.
(1)求证:△APP′是等腰直角三角形;
(2)求∠BPQ的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为提倡节约用水,准备实行自来水阶梯计费方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括最大值但不包括最小值),请你根据统计图解决下列问题:

(1)此次抽样调查的样本容量是   

(2)补全左侧统计图,并求扇形统计图中“25吨~30部分的圆心角度数.

(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题是真命题的是( )

A. 如果,则

B. 如果|a|=|b|,那么a=b

C. 两个锐角的和是钝角

D. 如果一点到线段两端的距离相等,那么这点是这条线段的中点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的面积法给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用面积法来证明,下面是小聪利用图1证明勾股定理的过程:

将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.

证明:连结DB,过点DBC边上的高DF,则DF=EC=b﹣a,

∵S四边形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四边形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

请参照上述证法,利用图2完成下面的证明.

将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把带有指针的圆形转盘A、B分别分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).小明、小乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为3的倍数,则小明胜;否则,小乐胜.(若有指针落在分割线上,则无效,需重新转动转盘)

(1)试用列表或画树状图的方法,求小明获胜的概率;
(2)请问这个游戏规则对小明、小乐双方公平吗?做出判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点EF分别在边DCAB上,DE=BF,把平行四边形沿直线EF折叠,使得点BC分别落在B′C′处,线段EC′与线段AF交于点G,连接DGB′G

求证:(11=2

2DG=B′G

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BDAC,EFAC,D、F分别是垂足,且∠1=4,试说明:∠ADG=C.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于频率与概率有下列几种说法:

明天下雨的概率是 90%”表示明天下雨的可能性很大;

抛一枚硬币正面朝上的概率为表示每抛两次就有一次正面朝上;

某彩票中奖的概率是 1%”表示买 10 张该种彩票不可能中奖;

抛一枚硬币正面朝上的概率为表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近.

正确的说法是( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

同步练习册答案