【题目】阅读与计算,请阅读以下材料,并完成相应的问题.
角平分线分线段成比例定理,如图1,在△ABC中,AD平分∠BAC,则.下面是这个定理的部分证明过程.
证明:如图2,过C作CE∥DA.交BA的延长线于E.…
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)如图3,已知Rt△ABC中,AB=3,BC=4,∠ABC=90°,AD平分∠BAC,求△ABD的周长.
【答案】(1)见解析;(2)△ABD的周长为.
【解析】
(1)如图2,过C作CE∥DA.交BA的延长线于E,利用平行线分线段成比例定理得到=,利用平行线的性质得∠2=∠ACE,∠1=∠E,由∠1=∠2得∠ACE=∠E,所以AE=AC,于是有=;
(2)先利用勾股定理计算出AC=5,再利用(1)中的结论得到=,即=,则可计算出BD=,然后利用勾股定理计算出AD=,从而可得到△ABD的周长.
(1)证明:如图2,过C作CE∥DA.交BA的延长线于E,
∵CE∥AD,
∴=,∠2=∠ACE,∠1=∠E,
∵∠1=∠2,
∴∠ACE=∠E,
∴AE=AC,
∴=;
(2)解:如图3,在RT中,∠ABC=90°
∵AB=3,BC=4
∴AC=5,
∵AD平分∠BAC,
∴=,即=,
∴BD=BC=,
在RT中,∠ABD=90°
∴AD===,
∴△ABD的周长=+3+=.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AD=2 , AB=1.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=MP;④BP=;⑤点F是△CMP外接圆的圆心,其中正确的个数为( )
A. 2个B. 3个C. 4个D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=a(x-h)2+k的对称轴是直线x=3,经过点(1,-2)和点(2,1).
(1)求函数的解析式;
(2)若m<n<3,A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E、F分别在矩形ABCD的边AD、AB上,连接EF,四边形ABFE沿EF翻折能与四边形重合,且与ED相交,若,则
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交点C,抛物线过A,C两点,与x轴交于另一点B.
(1)求抛物线的解析式.
(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当时,求的值.
(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+2x+k+1与x轴交与A、B两点,与y轴交与点C(0,-3).
(1)求抛物线的对称轴及k的值;
(2)求抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;
(3)点M是抛物线上的一动点,且在第三象限.
①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标.
②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一个三角形,设其三个内角度数分别为,和,若x,y,z满足,我们定义这个三角形为美好三角形.
(1)△ABC中,若,,则△ABC (填”是”或”不是”)美好三角形;
(2)如图,锐角△ABC是⊙O的内接三角形,,,⊙O直径为,求证:△ABC为美好三角形;
(3)已知△ABC为美好三角形,,求的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com