【题目】如图,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,2),点M从点A出发沿x轴负方向以每秒3cm的速度移动,同时点N从原点出发沿y轴正方向以每秒1cm的速度移动.设移动的时间为t秒.
(1)若点M在线段OA上,试问当t为何值时,△ABO与以点O、M、N为顶点的三角形相似?
(2)若直线y=x与△OMN外接圆的另一个交点是点C.
①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON=OC;
②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由.
【答案】(1)当t为1或1.8时,△ABO与以点O、M、N为顶点的三角形相似;(2)①说明见解析;②ON-OM=OC,理由见解析.
【解析】
(1)根据题意先把OA、OB的值算出来,再根据相似三角形的性质列出等量关系式,即可把时间t算出来.
(2) ①在ON的延长线的截取ND=OM,证CN=CM并且△CND≌△CMO,接着把∠COD的度数算出来,即可证明OM+ON=OC;
②先证△CDO为等腰直角三角形,再证明△CDN≌△COM即可得到.
(1)由题意,得OA=6,OB=2.
当0<t<2时,OM=6-3t,ON=t.
若△ABO∽△MNO,则,即.解得t=1.
若△ABO∽△NMO,则,即.解得t=1.8.
综上,当t为1或1.8时,△ABO与以点O、M、N为顶点的三角形相似.
(2)①当0<t<2时,在ON的延长线的截取ND=OM.
∵直线y=x与x轴的夹角为,∴OC平分∠AOB.
∴∠AOC=∠BOB.
∴.
∴CN=CM.
又∵ 在⊙O中∠CNO+∠CMO=180°,∠DNC+∠CNO=180°,
∴∠CND=∠CMO.
∴△CND≌△CMO.
∴CD=CO,∠DCN=∠OCM.
又∵∠AOB=90°,∴MN为⊙O的直径.
∴∠MCN=90°.
∴∠OCM+∠OCN=90°.
∴∠DCN+∠OCN=90°.
∴∠OCD=90°,
又∵CD=CO,∴OD=OC.
∴ON+ND=OC,
∴OM+ON=OC.
②当 t >2时,ON-OM=OC.
过点C作CD⊥OC交ON于点D.
∵∠COD=45°,
∴△CDO为等腰直角三角形,
∴OD=OC,
连接MC,NC,
∵MN为⊙O的直径,∴∠MCN=90°,
又∵在⊙O中,∠CMN=∠CNM=45°,∴MC=NC,
又∵∠OCD=∠MCN=90°,∴∠DCN=∠OCM,
∴△CDN≌△COM.∴DN=OM,
又∵OD=OC.,∴ON-DN=OC,
∴ON-OM=OC.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:形如y=|G|(G为用自变量表示的代数式)的函数叫做绝对值函数.
例如,函数y=|x﹣1|,y=,y=|﹣x2+2x+3|都是绝对值函数.
绝对值函数本质是分段函数,例如,可以将y=|x|写成分段函数的形式:.
探索并解决下列问题:
(1)将函数y=|x﹣1|写成分段函数的形式;
(2)如图1,函数y=|x﹣1|的图象与x轴交于点A(1,0),与函数y=的图象交于B,C两点,过点B作x轴的平行线分别交函数y=,y=|x﹣1|的图象于D,E两点.求证△ABE∽△CDE;
(3)已知函数y=|﹣x2+2x+3|的图象与y轴交于F点,与x轴交于M,N两点(点M在点N的左边),点P在函数y=|﹣x2+2x+3|的图象上(点P与点F不重合),PH⊥x轴,垂足为H.若△PMH与△MOF相似,请直接写出所有符合条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=2x+1与双曲线y2=相交于A(﹣2,a)和B两点.
(1)求k的值;
(2)在点B上方的直线y=m与直线AB相交于点M,与双曲线y2=相交于点N,若MN=,求m的值;
(3)在(2)前提下,请结合图象,求不等式2x<﹣1<m﹣1的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下
(1)样本中D级的学生人数占全班学生人数的百分比是 ;
(2)扇形统计图中A级所在的扇形的圆心角度数是 ;
(3)请把条形统计图补充完整;
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在参加了市教育质量综合评价学业素养测试后,随机抽取八年级部分学生,针对发展水平四个维度“阅读素养、数学素养、科学素养、人文素养”,开展了“你最需要提升的学业素养”问卷调查(每名学生必选且只能选择一项).小明、小颖和小雯在协助老师进行统计后,有这样一段对话:
小明:“选科学素养和人文素养的同学分别为16人,12人.”
小颖:“选数学素养的同学比选阅读素养的同学少4人.”
小雯:“选科学素养的同学占样本总数的20%.”
(1)这次抽样调查了多少名学生?
(2)样本总数中,选“阅读素养”、“数学素养”的学生各多少人?
(3)该校八年级有学生400人,请根据调查结果估计全年级选择“阅读素养”的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面的表格,根据表格解答下列问题:
-2 | 0 | 1 | |
1 | |||
-3 | -3 |
(1)写出,,的值;
(2)在直角坐标系中画出二次函数的图象;并根据图象写出使不等式成立时的取值范围;
(3)设该图象与轴两个交点分别为,,与轴交点为,直接写出的外心坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数的图象上,边CD在x轴上,点B在y轴上.已知.
(1)点A是否在该反比例函数的图象上?请说明理由.
(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标.
(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“特色福州,美好生活”,福州举行金色秋天旅游活动.明明和华华同学分析网上关于旅游活动的信息,发现最具特色的景点有:①鼓岭、②森林公园、③青云山.他们准备周日下午去参观游览,各自在这三中个景点任选一个,每个景点被选中的可能性相同.
(1)明明同学在三个备选景点中选中鼓岭的概率是 .
(2)用树状图或列表法求出明明和华华他们选中不同景点参观的概率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com