精英家教网 > 初中数学 > 题目详情

【题目】如图,已知E是正方形ABCD对角线AC上的一点,AE=AD,过点E作AC的垂线,交边CD于点F,∠FAD=度.

【答案】22.5
【解析】解:∵四边形ABCD是正方形, ∴∠D=∠BAD=90°,∠DAC=45°,
∵EF⊥AC,
∴∠AEF=∠D=90°,
在Rt△AFE和Rt△AFD中,

∴Rt△AFE≌Rt△AFD,
∴∠FAD=∠FAE=22.5°,
所以答案是22.5.

【考点精析】认真审题,首先需要了解正方形的性质(正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义运算:ab=a(1﹣b).若a,b是方程x2﹣x+ m=0(m<0)的两根,则bb﹣aa的值为(
A.0
B.1
C.2
D.与m有关

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.

(1)如图1,当k=1时,直接写出A,B两点的坐标;
(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;
(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),抛物线在x轴下方的部分沿x轴翻折得到与原抛物线剩余的部分组成如图所示的图形,若直线y=kx+1与这个图形只有两个公共点,请求出此时k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元
(1)A商品的单价是元,B商品的单价是
(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,设购买A商品的件数为x件,该商店购买的A、B两种商品的总费用为y元 ①求y与x的函数关系式
②如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,求购买B商品最多有多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是( )
A.a<b
B.a<3
C.b<3
D.c<﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点D为等腰直角ABC内一点,CAD=CBD=15°,E为AD延长线上的一点,且CE=CA

1求证:DE平分BDC;

2若点M在DE上,且DC=DM,求证:ME=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:
已知:直线l和l外一点P.(如图1)
求作:直线l的垂线,使它经过点P.
作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.
所以直线PQ就是所求的垂线.
请回答:该作图的依据是

查看答案和解析>>

同步练习册答案