精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作分、FG∥CD,交AE于点G连接DG.

(1)求证:四边形DEFG为菱形;
(2)若CD=8,CF=4,求的值.

【答案】
(1)

证明:由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,

∵FG∥CD,

∴∠2=∠3,

∴FG=FE,

∴DG=GF=EF=DE,

∴四边形DEFG为菱形;


(2)

解:设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,

在Rt△EFC中,FC2+EC2=EF2

即42+(8﹣x)2=x2

解得:x=5,CE=8﹣x=3,

=


【解析】(1)根据折叠的性质,易知DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,易证FG=FE,故由四边相等证明四边形DEFG为菱形;
(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1 , 0),B(x2 , 0),与y轴交于点C,且O,C两点间的距离为3,x1x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.
(1)求点C的坐标
(2)当y1随着x的增大而增大时,求自变量x的取值范围;
(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则(  )

A.ac+1=b
B.ab+1=c
C.bc+1=a
D.以上都不是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列交通标志中,是中心对称图形的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.

(1)当AC=2时,求⊙O的半径;
(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬“东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.
(1)请直接写出第一位出场是女选手的概率;
(2)请用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD的中点.若AC=10,DC=,则BO= ,∠EBD的大小约为  分.(参考数据:tan26°34′≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.

(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D
(2)证明四边形ABCD是平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某玉米种子的价格为a/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.下表是购买量x(千克)、付款金额y(元)部分对应的值,请你结合表格:

购买量x(千克)

1.5

2

2.5

3

付款金额y(元)

7.5

10

12

b

(1)写出a、b的值,a=    b=   

(2)求出当x2时,y关于x的函数关系式;

(3)甲农户将18.8元钱全部用于购买该玉米种子,计算他的购买量.

查看答案和解析>>

同步练习册答案