4£®¡¾ÏÖ³¡Ñ§Ï°¡¿
¶¨Ò壺ÎÒÃǰѾø¶ÔÖµ·ûºÅÄÚº¬ÓÐδ֪ÊýµÄ·½³Ì½Ð×ö¡°º¬Óоø¶ÔÖµµÄ·½³Ì¡±£®
È磺|x|=2£¬|2x-1|=3£¬|${\frac{x-1}{2}}$|-x=1£¬¡­¶¼ÊǺ¬Óоø¶ÔÖµµÄ·½³Ì£®
ÔõÑùÇóº¬Óоø¶ÔÖµµÄ·½³ÌµÄ½âÄØ£¿»ù±¾Ë¼Â·ÊÇ£ºº¬Óоø¶ÔÖµµÄ·½³Ì¡ú²»º¬Óоø¶ÔÖµµÄ·½³Ì£®
ÎÒÃÇÖªµÀ£¬¸ù¾Ý¾ø¶ÔÖµµÄÒâÒ壬ÓÉ|x|=2£¬¿ÉµÃx=2»òx=-2£®
[Àý]½â·½³Ì£º|2x-1|=3£®
ÎÒÃÇÖ»Òª°Ñ2x-1¿´³ÉÒ»¸öÕûÌå¾Í¿ÉÒÔ¸ù¾Ý¾ø¶ÔÖµµÄÒâÒå½øÒ»²½½â¾öÎÊÌ⣮
½â£º¸ù¾Ý¾ø¶ÔÖµµÄÒâÒ壬µÃ2x-1=3»ò2x-1=-3£®
½âÕâÁ½¸öÒ»ÔªÒ»´Î·½³Ì£¬µÃx=2»òx=-1£®
¼ìÑ飺
£¨1£©µ±x=2ʱ£¬
Ô­·½³ÌµÄ×ó±ß=|2x-1|=|2¡Á2-1|=3£¬
Ô­·½³ÌµÄÓÒ±ß=3£¬
¡ß×ó±ß=ÓÒ±ß
¡àx=2ÊÇÔ­·½³ÌµÄ½â£®
£¨2£©µ±x=-1ʱ£¬
Ô­·½³ÌµÄ×ó±ß=|2x-1|=|2¡Á£¨-1£©-1|=3£¬
Ô­·½³ÌµÄÓÒ±ß=3£¬
¡ß×ó±ß=ÓÒ±ß
¡àx=-1ÊÇÔ­·½³ÌµÄ½â£®
×ۺϣ¨1£©£¨2£©¿ÉÖª£¬Ô­·½³ÌµÄ½âÊÇ£ºx=2£¬x=-1£®
¡¾½â¾öÎÊÌâ¡¿
½â·½³Ì£º|${\frac{x-1}{2}}$|-x=1£®

·ÖÎö ¸ù¾ÝÈ¥¾ø¶ÔÖµ·ûºÅ½â¾ö·½³ÌµÄÎÊÌ⣬ͨ¹ýÈ¥¾ø¶ÔÖµ·ûºÅ½«·½³Ì±ä³ÉÎÒÃÇÊìϤµÄÒ»ÔªÒ»´Î·½³Ì£¬ÔÙͨ¹ý¼ìÑéµÄ·½·¨ÑéÖ¤·½³ÌµÄ½âÊÇ·ñÕýÈ·£®

½â´ð ½â£ºÔ­·½³Ì±äÐÎΪ£º|$\frac{x-1}{2}$|=x+1£¬
 ¸ù¾Ý¾ø¶ÔÖµµÄÒâÒ壬µÃ$\frac{x-1}{2}$=1+x»ò$\frac{x-1}{2}$=-£¨1+x£©£¬
 ½âµÃ£ºx=-3»ò x=-$\frac{1}{3}$£¬
 ¾­¼ìÑ飺x=-3²»ÊÇÔ­·½³ÌµÄ½â£¬x=-$\frac{1}{3}$ÊÇÔ­·½³ÌµÄ½â£¬
 ËùÒÔ£¬Ô­·½³ÌµÄ½âÊÇ£ºx=-$\frac{1}{3}$£®

µãÆÀ ±¾Ì⿼²éº¬¾ø¶ÔÖµ·ûºÅµÄÒ»ÔªÒ»´Î·½³Ì£¬½âÌâµÄ¹Ø¼üÊÇÃ÷ȷʲôÊÇ¡°º¬Óоø¶ÔÖµµÄ·½³Ì¡±£¬ÔÚÀýÌâµÄ½²½âÖÐÈÃѧÉúÃÇÇÐʵѧϰµ½ÁËÈçºÎÈ¥¾ø¶ÔÖµ·ûºÅ£¬²¢½Ì»áº¢×ÓÃÇÀûÓüìÑéµÄ·½·¨È¥³ýÔö¸ù£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÔÚÏÂÁÐÍø¸ñÖУ¬Ð¡Õý·½Ðεı߳¤Îª1£¬µãA¡¢B¡¢O¶¼ÔÚ¸ñµãÉÏ£¬Ôò¡ÏAµÄÕýÏÒÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{\sqrt{5}}{5}$B£®$\frac{\sqrt{5}}{10}$C£®$\frac{2\sqrt{5}}{5}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ð¡Ã÷ÓÃÈô¸É¸öÕý·½Ðκͳ¤·½ÐÎ×¼±¸Æ´³ÉÒ»¸ö³¤·½ÌåµÄÕ¹¿ªÍ¼£¬Æ´Íêºó£¬Ð¡Ã÷¿´À´¿´È¥¾õµÃËùƴͼÐÎËÆºõ´æÔÚÎÊÌ⣮
£¨1£©ÇëÄã°ïСÃ÷·ÖÎöÒ»ÏÂÆ´Í¼ÊÇ·ñ´æÔÚÎÊÌ⣬ÈôÓжàÓàͼÐΣ¬Ç뽫¶àÓಿ·ÖÍ¿ºÚ£»ÈôͼÐβ»È«£¬ÔòÖ±½ÓÔÚԭͼÖв¹È«£»
£¨2£©ÈôͼÖеÄÕý·½Ðα߳¤Îª5cm£¬³¤·½Ðεij¤Îª8cm£¬Çë¼ÆËãÐÞÕýºóËùÕÛµþ¶ø³ÉµÄ³¤·½ÐεıíÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¶àÏîʽ-x2-$\frac{1}{2}x$+$\frac{1}{4}$È¡µÃ×î´óֵʱ£¬xµÄֵΪ£¨¡¡¡¡£©
A£®-$\frac{1}{4}$B£®-$\frac{1}{2}$C£®$\frac{1}{2}$D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬Ò»´Îº¯Êýy1=-x+2µÄͼÏóÓë·´±ÈÀýº¯Êýy2=$\frac{m}{x}$µÄͼÏó½»ÓÚµãA£¨-1£¬3£©¡¢B£¨n£¬-1£©£®
£¨1£©Çó·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨2£©µ±y1£¾y2ʱ£¬Ö±½Óд³öxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁÐʼþÊDZØÈ»Ê¼þµÄÊÇ£¨¡¡¡¡£©
A£®ÓÐÁ½±ß¼°Ò»½Ç¶ÔÓ¦ÏàµÈµÄÁ½Èý½ÇÐÎÈ«µÈ
B£®Èôa2=b2 ÔòÓÐa=b
C£®·½³Ìx2-x+1=0ÓÐÁ½¸ö²»µÈʵ¸ù
D£®Ô²µÄÇÐÏß´¹Ö±ÓÚ¹ýÇеãµÄ°ë¾¶

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬ÓÐ6ÕÅÆË¿ËÅÆ£¬´ÓÖÐËæ»ú³éȡһÕÅ£¬µãÊýСÓÚ7µÄ¿ÉÄÜÐÔ´óСÊÇ£¨¡¡¡¡£©
A£®3B£®$\frac{1}{2}$C£®1D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬Æ½ÃæÖ±½Ç×ø±êϵµÄÔ­µãOÊÇÕý·½ÐÎABCDµÄÖÐÐÄ£¬¶¥µãA£¬BµÄ×ø±ê·Ö±ðΪ£¨1£¬1£©¡¢£¨-1£¬1£©£¬°ÑÕý·½ÐÎABCDÈÆÔ­µãOÄæÊ±ÕëÐýת45¡ãµÃµ½Õý·½ÐÎA¡äB¡äC¡äD¡ä£¬ÔòÕý·½ÐÎABCDÓëÕý·½ÐÎA¡äB¡äC¡äD¡äÖØµþ²¿·ÖÐγɵÄÕý°Ë±ßÐεı߳¤Îª£¨¡¡¡¡£©
A£®2-$\sqrt{2}$B£®2$\sqrt{2}$-2C£®4-2$\sqrt{2}$D£®$\sqrt{2}$+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º
£¨1£©5x2-£¨y+x£©£¨x-y£©-£¨2x-y£©2£¬ÆäÖÐx=1£¬y=2£®
£¨2£©£¨$\frac{1-a}{a+1}+1$£©¡Â$\frac{2}{{a}^{2}-1}$£¬ÆäÖÐa=$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸