精英家教网 > 初中数学 > 题目详情

【题目】如图7,在四边形ABCD中,ABBC,∠ABC=60°,ECD边上一点,连接BE,以BE为一边作等边三角形BEF.请用直尺在图中连接一条线段,使图中存在经过旋转可完全重合的两个三角形,并说明这两个三角形经过什么样的旋转可重合.

【答案】见解析,将CBE绕点B逆时针旋转60°,可与ABF重合.

【解析】

根据BEF是等边三角形,可得∠EBF=60°=CBA,EB=FB,进而得出∠CBE=ABF,再根据AB=BC,即可得到BCE≌△BAF,进而得出将CBE绕点B逆时针旋转60°,可与ABF重合.

如图,连接AF.

CBE绕点B逆时针旋转60°,可与ABF重合.

理由:

∵△BEF是等边三角形,

∴∠EBF=60°=CBA,EB=FB,

∴∠CBE=ABF,

又∵AB=BC,

∴△BCE≌△BAF,

∴将CBE绕点B逆时针旋转60°,可与ABF重合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表

第一次

第二次

第三次

第四次

第五次

第六交

9

8

6

7

8

10

8

7

9

7

8

8

对他们的训练成绩作如下分析,其中说法正确的是(  )

A. 他们训练成绩的平均数相同 B. 他们训练成绩的中位数不同

C. 他们训练成绩的众数不同 D. 他们训练成绩的方差不同

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,⊙P的圆心是(2,a)(a >0),半径是2,与y轴相切于点C,直线y=x被⊙P截得的弦AB的长为,则a的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+4x轴、y轴分别交于点ABMy轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为(  )

A.0,﹣4 B.0,﹣5 C.0,﹣6 D.0,﹣7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店在节日期间开展优惠促销活动:凡购买原价超过200元的商品,超过200元的部分可以享受打折优惠若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)之间的函数关系的a图象如图所示,则图中a的值是(  )

A.300B.320C.340D.360

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l为正比例函数的图象,点的坐标为,过点x轴的垂线交直线l于点,以为边作正方形;过点作直线l的垂线,垂足为,交x轴于点,以为边作正方形;过点x轴的垂线,垂足为,交直线l于点,以为边作正方形……按此规律操作下去,得到的正方形的面积是______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,为坐标原点.一次函数的图象与x轴交于点,与y轴交于点B,与正比例函数的图象交于点

1)求一次函数的解析式;

2)在x轴上寻找点P,使得为等腰三角形,直接写出所有满足条件的点P的坐标;

3)在直线AB上寻找点Q,使得,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知菱形ABCD中,AB=8,点G是对角线BD上一点,CGBA的延长线于点F.

(1)求证:CG2=GEGF;

(2)如果DG=GB,且AGBF,求cosF.

查看答案和解析>>

同步练习册答案