【题目】如图,已知A(n,2),B(1,4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.
(3)直接写出kx+b>时,的取值范围为 .
【答案】(1)y=,y=﹣2x+2;(2)3;(3)x<-1或0<x<2
【解析】
(1)把B的坐标代入可求出反比例函数的关系式,进而确定点A的坐标,由A、B两点坐标进而可以求出一次函数的关系式;
(2)求出一次函数与x轴的交点坐标,将S△AOB转化为求S△AOC+S△BOC即可;
(3)利用图象,可以直观得出答案.
解:(1)∵A(n,2),B(1,4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点,
∴4=.得m=﹣4,
∴y=.
∴.得n=2.
∴点A(2,﹣2).
∴,解得,
∴一次函数解析式为y=2x+2.
即反比例函数解析式为y=,一次函数解析式为y=﹣2x+2.
(2)设直线与y轴的交点为C,当x=0时,y=2×0+2=2.
∴点C的坐标是(0,2).
∴S△AOB=S△AOC+S△BOC=×2×2+×2×1=3.
(3)不等式kx+b>时,的取值范围为:x<1或0<x<2.
科目:初中数学 来源: 题型:
【题目】如图,点是半圆的半径上的动点,作于.点是半圆上位于左侧的点,连结交线段于,且.
(1) 求证:是⊙O的切线.
(2) 若⊙O的半径为,,设.
①求关于的函数关系式.
②当时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小区新建成的住宅楼主体工程已经竣工,只剩下楼体外表需贴瓷砖,已知楼体外表的面积为.
(1)写出每块瓷砖的面积与所需的瓷砖块数(块)之间的函数关系式;
(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是,灰、白、蓝瓷砖使用比例是,则需要三种瓷砖各多少块?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校七年级共有500名学生,为了解该年级学生的课外阅读情况,将从中随机抽取的40名学生一个学期的阅读量(阅读书籍的本数)作为样本,根据数据绘制了如下的表格和统计图:
等级 | 阅读量(本) | 频数 | 频率 |
E | x≤2 | 4 | 0.1 |
D | 2<x≤4 | 12 | 0.3 |
C | 4<x≤6 | a | 0.35 |
B | 6<x≤8 | c | b |
A | x>8 | 4 | 0.1 |
根据上面提供的信息,回答下列问题:
(1)统计表中的 , ;并补全条形统计图;
(2)根据抽样调查结果,请估计该校七年级学生一学期的阅读量为“等”的有多少人?
(3)样本中阅读量为“等”的4名学生中有2名男生和2名女生,现从中随机挑选2名同学参加区里举行的“语文学科素养展示”活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)设OE交⊙O于点F,若DF = 2,BC = ,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,港口A在观测站 O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达 B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为 _____km.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形 ABCD 为矩形.
(1)如图1,E为CD上一定点,在AD上找一点F,使得矩形沿着EF折叠后,点D落在 BC边上(尺规作图,保留作图痕迹);
(2)如图2,在AD和CD边上分别找点M,N,使得矩形沿着MN折叠后BC的对应边B' C'恰好经过点D,且满足B' C' ⊥BD(尺规作图,保留作图痕迹);
(3)在(2)的条件下,若AB=2,BC=4,则CN= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】快、慢两车分别从相距千米路程的甲、乙两地同时出发,匀速行驶.先相向而行,快车到达乙地后,停留小时,然后按原路原速返回,快车比慢车晚小时到达甲地,快、慢两车之间相距的距离(千米)与出发后所用的时间(小时)的关系如图所示,请问:在快车返回途中,快、慢两车相距路程为千米时,慢车行驶了__________小时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点从点运动到点停止,连接,以长为直径作.
(1)若,求的半径;
(2)当与相切时,求的面积;
(3)连接,在整个运动过程中,的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com