【题目】如图,点是半圆的半径上的动点,作于.点是半圆上位于左侧的点,连结交线段于,且.
(1) 求证:是⊙O的切线.
(2) 若⊙O的半径为,,设.
①求关于的函数关系式.
②当时,求的值.
【答案】(1)连接DO,根据垂直的定义可得∠3+∠4=90°,由PD=PE,OD=OB可得∠1=∠2,∠5=∠4,又∠2=∠3可得∠1+∠5=90°,即得∠PDO=90°,从而证得结论;(2)①y=x2+144;②
【解析】
试题(1)要证PD是⊙O的切线只要证明∠PDO=90°即可;
(2)①分别用含有x,y的式子,表示OP2和PD2这样便可得到y关于x的函数关系式;
②已知x的值,则可以根据关系式求得PD的值,已PC的值且PD=PE,从而可得到EC,BE的值,这样便可求得tanB的值.
试题解析:(1)证明:连接OD.
∵OB=OD,∴∠OBD=∠ODB.
∵PD=PE,∴∠PDE=∠PED.
∠PDO=∠PDE+∠ODE
=∠PED+∠OBD
=∠BEC+∠OBD
=90°,
∴PD⊥OD.
∴PD是⊙O的切线.
(2)解:①连接OP.
在Rt△POC中,OP2=OC2+PC2=x2+192.
在Rt△PDO中,PD2=OP2-OD2=x2+144.
∴y=x2+144(0≤x≤4).
②当x=时,y=147,
∴PD=7,
∴EC=,
∵CB=3,
∴在Rt△ECB中,tanB=.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=ax2+bx+与x轴分别交于点A(﹣1,0),B(3,0),点C是顶点.
(1)求抛物线的解析式;
(2)如图1,线段DE是射线AC上的一条动线段(点D在点E的下方),且DE=2,点D从点A出发沿着射线AC的方向以每秒2个单位长度的速度运动,以DE为一边在AC上方作等腰Rt△DEF,其中∠EDF=90°,设运动时间为t秒.
①点D的坐标是 (用含t的代数式表示);
②当直线BC与△DEF有交点时,请求出t的取值范围;
(3)如图2,点P是△ABC内一动点,BP=,点M,N分别是AB,BC边上的两个动点,当△PMN的周长最小时,请直接写出四边形PNBM面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有4张相同的卡片分别写着数字﹣1、2、﹣3、4,将卡片的背面朝上,并洗匀.从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的b.则这个一次函数的图象恰好经过第一、二、四象限的概率是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(抗击疫情)为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“听课不停学”的要求,各地学校也都开展了远程网络教学,某校集中为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据结果绘制成如下两幅不完整的统计图。
(1)本次调查的人数有多少人?
(2)请补全条形图;
(3)请求出“在线答疑”在扇形图中的圆心角度数;
(4)小宁和小娟都参加了远程网络教学活动,请求出小宁和小娟选择同一种学习方式的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与双曲线交于 A、B 两点,且点A的横坐标.
(1)求 k 的值;
(2)若双曲线 上点 C 的纵坐标为 3,求△AOC 的面积;
(3)在 y 轴上有一点 M,在直线 AB 上有一点 P,在双曲线上有一点 N,若四边形OPNM 是有一组对角为 60°的菱形,请写出所有满足条件的点 P 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中, 分别是边上的两个动点( 不与 重合),且保持 ,以 为边,在点 A 的异侧作正方形.
(1)试求的面积;
(2)当边 与 重合时,求正方形的边长;
(3)设 与正方形 重叠部分的面积为,试求关于 的函数关系式,并写出自变量的范围;
(4)当 是等腰三角形时,请直接写出 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2011山东济南,27,9分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(n,2),B(1,4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.
(3)直接写出kx+b>时,的取值范围为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com