【题目】如图,已知在四边形ABCD中,AB=CD,BC=AD,E、F是对角线AC上两点,且AE=CF.求证:BE=DF.
【答案】证明见解析.
【解析】
法一可先证四边形ABCD是平行四边形,再证△ABE≌△CDF,即可证明BE=DF.法二根据先证四边形ABCD是平行四边形平行.根据SAS证△ABE≌△CDF,即可推出BE=DF.
解:法一)∵AB=CD,BC=AD,∴四边形ABCD是平行四边形
∴AB∥CD ,∴∠BAE=∠DCF
又∵AE=CF ,∴△ABE≌△CDF(SAS) ,∴BE=DF .
法二)连接BF、DE及BD,BD交AC于点O,
.
∵AB=CD,BC=AD∴四边形ABCD是平行四边形
∴OB=OD,OA=OC ∵AE=CF
∴OA-AE=OC-CF ,即OE=OF
∴△ABE≌△CDF(SAS) ,∴BE=DF.
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0).
(1)直线经过点C,且与x轴交与点E,求四边形AECD的面积;
(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;
(3)若直线l1经过点F(﹣,0),且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位交轴x于点M,交直线l1于点N,求△NMF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】分解因式:
(1)3x2﹣6xy+3y2
(2)﹣3x3y2+6x2y3﹣3xy4
(3)4a2﹣25b2
(4)(2x+3y)(2x﹣y)﹣y(2x﹣y)
(5)x3﹣4x
(6)(m+1)(m﹣9)+8m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人玩数字游戏,先由甲写一个数,再由乙猜甲写的数:要求:他们写和猜的数字只在,、、,这五个数字中:
请用列表法或树状图表示出他们写和猜的所有情况;
如果他们写和猜的数字相同,则称他们“心灵相通”:求他们“心灵相通”的概率;
如果甲写的数字记为,把乙猜的数字记为,当他们写和猜的数字满足,则称他们“心有灵犀”,求他们“心有灵犀”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( )
A.4,30° B.2,60° C.1,30° D.3,60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中,厘米,厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动.同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当与全等时,v的值为______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 xOy 中,△ABC 的三个顶点的坐标分别是 A(2,3),B(1,0),C(1,2).
(1)在图中画出△ABC 关于 y 轴对称的
(2)直接写出 三点的坐标:
( ), ( ), ( );
(3)如果要使以 B、C、D 为顶点的三角形与△ABC 全等,直接写出所有符合条件的点 D 坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com