精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,ECD边上的点,且BE=BA=2BC=4,以点A为圆心、AD长为半径作 AAB于点M,过点B作⊙A的切线BF,切点为F

1)试说明直线BE是⊙A的切线。

2)求图中阴影部分的面积.

【答案】1)证明见解析;(2

【解析】

1)连接AE,过AAHBE,过EEGAB,再证明AH=AD即可;

2)连接AF,则图中阴影部分的面积=直角三角形ABF的面积﹣扇形MAF的面积.

1连接AE,过AAHBE,过EEGAB,则四边形ADEG是矩形.

SABEBEAHABEGAB=BE,∴AH=EG

∵四边形ADEG是矩形,∴AD=EG,∴AH=AD,∴BE是⊙A的切线;

2)连接AF

BF是⊙A的切线,∴∠BFA=90°

BE=BA=2BC=4,∴BC=AD=AF=2,∠BEC=30°.

BACD,∴∠HBA=BEC=30°.

BFBE是⊙A的切线,∴∠FBA=HBA=30°,∴∠BAF=60°,BFAF=,∴图中阴影部分的面积=直角三角形ABF的面积﹣扇形MAF的面积2×=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=mx2+2mx3x轴交于Ax10),Bx20)两点,与y轴交于点C,且x2x1=4

1)求抛物线的解析式;

2)求抛物线的对称轴上存在一点P,使PA+PC的值最小,求此时点P的坐标;

3)点M是抛物线上的一动点,且在第三象限.

①当M点运动到何处时,AMB的面积最大?求出AMB的最大面积及此时点M的坐标.

②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边CDRtEFG的直角边EF重合,将正方形ABCD1cm/s的速度沿FE方向移动,在移动过程中,边CD始终与边EF重合(移动开始时点C与点F重合).连接AE,过点CAE的平行线交直线EG于点H,连接HD.已知正方形ABCD的边长为1cmEF=4cm,设正方形移动时间为xs),线段EH的长为ycm),其中0≤x≤2.5

1)当x=2时,AE的长为

2)试求出y关于x的函数关系式,并求出EHDADE的面积之差;

3)当正方形ABCD移动时间x= 时,线段HD所在直线经过点B

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+ca0)的图象过点(-2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若Ax1m),Bx2m)是抛物线上的两点,当x=x1+x2时,y=c;④若方程ax+2)(4-x=-2的两根为x1x2,且x1<x2,则-2x1<x2<4.

其中结论正确的有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司设计了一款产品,每件成本是50元,在试销期间,据市场调查,销售单价是60元时,每天的销量是250件,而销售单价每增加1元,每天会少售出5件,公司决定销售单价x(元)不低于60元,而市场要求x不得超过100元.

1)求出每天的销售量y(件)与销售单价x(元)之间的函数关系式,并写出x的取值范围;

2)求出每天的销售利润W(元)与销售单价x(元)之间的函数关系式,并求出当x为多少时,每天的销售利润最大,并求出最大值;

3)若该公司要求每天的销售利润不低于4000元,但每天的总成本不超过6250元,则销售单价x最低可定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.

(1)求抛物线的表达式;

(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:

(1)每千克核桃应降价多少元?

(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.

(1)求证:△AOE≌△BOF;

(2)如果两个正方形的边长都为a,那么正方形A1B1C1OO点转动,两个正方形重叠部分的面积等于多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,H是对角线BD的中点,延长DCE,使得DE=DB,连接BE,作DFBEBC于点G,交BE于点F,连接CHFH,下列结论:(1HC=HF;(2DG=2EF;(3BE·DF=2CD2;(4SBDE=4SDFH;(5HFDE,正确的个数是(

A.5B.4C.3D.2

查看答案和解析>>

同步练习册答案