精英家教网 > 初中数学 > 题目详情

【题目】定义符号min{ab}的含义为:当ab时,min{ab}=b;当ab时,min{ab}=a,如:min{1-2=-2min{-3-2=-3,则方程min{x-x}=x2-1的解是________

【答案】

【解析】

利用min{ab}的含义分类讨论:若x-x时,代入解方程即可,若x-x时,代入解方程即可.

解:①当x-xx≥0时,根据min{ab}的含义

min{x-x}=-x

又∵min{x-x}=x2-1

-x=x2-1

解得

∵此时x≥0,故不符合,故舍去;

②当x-x,即x0时,根据min{ab}的含义

min{x-x}=x

又∵min{x-x}=x2-1

x=x2-1

解得:

∵此时x<0,故不符合,故舍去;

综上所述:方程min{x-x}=x2-1的解是:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠MON90°,长方形ABCD的顶点BC分别在边OMON上,当B在边OM上运动时,C随之在边ON上运动,若CD5BC24,运动过程中,点D到点O的最大距离为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.

(1)求证:AF+EF=DE;

(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;

(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BECD交CD的延长线于点E,连接AE,过A作AFAE交CD于点F.

(1)求证:AE=AF;

(2)求证:CD=2BE+DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△DEF中,∠ACB=EFD=90°,点BFCD在同一直线上,已知ABDE,且AB=DEAC=6EF=8DB=10,则CF的长度为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农场要建一个饲养场(矩形ABCD)两面靠现有墙(AD位置的墙最大可用长度为27米,AB位置的墙最大可用长度为15米),另两边用木栏围成,中间也用木栏隔开,分成两个场地及一处通道,并在如图所示的三处各留1米宽的门(不用木栏)。建成后木栏总长45米。设饲养场(矩形ABCD)的一边AB长为x米.

(1)饲养场另一边BC= 米(用含x的代数式表示).

(2)若饲养场的面积为180平方米,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别2754,则正方形③的边长为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EBC的中点,连接AE并延长交DC的延长线于点F.

(1)求证:AB=CF;

(2)连接DE,若AD=2AB,求证:DEAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线PQMN,点APQ上,直角BEF的直角边BEMN上,且∠B=90°,BEF=30°.现将BEF绕点B以每秒的速度按逆时针方向旋转(E,F的对应点分别是E′,F′),同时,射线AQ绕点A以每秒的速度按顺时针方向旋转(Q的对应点是Q′).设旋转时间为t秒(0≤t≤45).

(1)MBF′=__.(用含t的代数式表示)

(2)在旋转的过程中,若射线AQ′与边E′F′平行时,则t的值为__

查看答案和解析>>

同步练习册答案