【题目】如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是( )
A. 4个 B. 3个 C. 2个 D. 1个
【答案】C
【解析】
根据同角的余角相等求出∠ABG=∠BCD,然后利用“角边角”证明△ABG和△BCD
全等,根据全等三角形对应边相等可得AG=BD,然后求出,再求出△AFG和
△CFB相似,根据相似三角形对应边成比例可得从而判断出①正确;求出
,然后根据FE≠BE判断出②错误;根据相似三角形对应边成比例求出
再根据等腰直角三角形的性质可得然后整理即可得到判断出
③正确;过点F作MF⊥AB于M,根据三角形的面积整理即可判断出④错误.
∵∠ABC=90°,BG⊥CD,
∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,
∴∠ABG=∠BCD,
在△ABC和△BCD中,
∴△ABG≌和△BCD(ASA),
∴AG=BD,
∵点D是AB的中点,
∴
∴
在Rt△ABC中,∠ABC=90°,
∴AB⊥BC,
∵AG⊥AB,
∴AG∥BC,
∴△AFG∽△CFB,
∴
∵BA=BC,
∴故①正确;
∵△AFG∽△CFB,
∴
∴
∵FE≠BE,
∴点F是GE的中点不成立,故②错误;
∵△AFG∽△CFB,
∴
∴
∵
∴故③正确;
过点F作MF⊥AB于M,则FM∥CB,
∴
∵
∴ 故④错误.
综上所述,正确的结论有①③共2个.
故选:C.
科目:初中数学 来源: 题型:
【题目】某建设工地一个工程有大量的沙石需要运输.建设公司车队有载重量为8吨和10吨的卡车共12辆,全部车辆一次能运输110吨沙石
(1)求建设公司车队载重量为8吨和10吨的卡车各有多少辆?
(2)随着工程的进展,车队需要一次运输沙石超过160吨,为了完成任务,准备新增购这两种卡车共6辆,车队最多新购买载重量为8吨的卡车多少辆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,O为坐标原点,直线y=﹣x+4交x轴于点C,交y轴于点A,过A、C两点的抛物线y=ax2+bx+4交x轴负半轴于点B,且tan∠BAO=.
(1)求抛物线的解析式;
(2)已知E、F是线段AC上异于A、C的两个点,且AE<AF,EF=2,D为抛物线上第一象限内一点,且DE=DF,设点D的横坐标为m,△DEF的面积为S,求S与m的函数关系式(不要求写出自变量m的取值范围);
(3)在(2)的条件下,当∠EDF=90°时,连接BD,P为抛物线上一动点,过P作PQ⊥BD交线段BD于点Q,连接EQ.设点P的横坐标为t,求t为何值时,PE=QE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,直线L:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做L的关联抛物线,而L叫做P的关联直线.
(1)若L:y=-x+2,则P表示的函数解析式为______;若P:,则表示的函数解析式为_______.
(2)如图②,若L:y=-3x+3,P的对称轴与CD相交于点E,点F在L上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;
(3)如图③,若L:y=mx+1,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,求出L,P表示的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:四边形为的内接四边形,连接,为的直径,于点.
(1)如图,求证:;
(2)如图,连接,当时,求证:;
(3)如图,在(2)的条件下,延长交于点,连接, ,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一平面直角坐标系中,一次函数与反比例函数(为常数,且)的图像交于、两点,它们的部分图像如图所示,的面积是6.
(1)求一次函数与反比例函数的表达式;
(2)请直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,点为直线上一点,直线过点C.
求m和b的值;
直线与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动设点P的运动时间为t秒.
①若点P在线段DA上,且的面积为10,求t的值;
②是否存在t的值,使为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一动点从半径为2的上的点出发,沿着射线方向运动到上的点处,再向左沿着与射线夹角为的方向运动到上的点处;接着又从点出发,沿着射线方向运动到上的点处,再向左沿着与射线夹角为的方向运动到上的点处;间的距离是________;…按此规律运动到点处,则点与点间的距离是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com