精英家教网 > 初中数学 > 题目详情
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.猜测DE、BD、CE三条线段之间的数量关系(直接写出结果即可).
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问第(1)题中DE、BD、CE之间的关系是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断线段DF、EF的数量关系,并说明理由.
考点:全等三角形的判定与性质,等边三角形的性质,等腰直角三角形
专题:
分析:(1)利用已知得出∠CAE=∠ABD,进而利用AAS得出则△ABD≌△CAE,即可得出DE=BD+CE;
(2)根据∠BDA=∠AEC=∠BAC=α,得出∠CAE=∠ABD,在△ADB和△CEA中,根据AAS证出△ADB≌△CEA,从而得出AE=BD,AD=CE,即可证出DE=BD+CE;
(3)与前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,
利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.则
DF=EF.
解答:解:(1)DE=BD+CE.理由如下:
如图1,∵BD⊥l,CE⊥l,
∴∠BDA=∠AEC=90°
又∵∠BAC=90°,
∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,
∴∠CAE=∠ABD               
在△ABD和△CAE中,
∠ABD=∠CAE
∠ADB=∠CEA=90°
AB=AC

∴△ABD≌△CAE(AAS)
∴BD=AE,AD=CE,
∵DE=AD+AE,
∴DE=CE+BD;

(2)如图2,∵∠BDA=∠AEC=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
∠ABD=∠CAE
∠ADB=∠CEA
AB=AC

∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴BD+CE=AE+AD=DE;

(3)DF=EF.理由如下:
由(2)知,△ADB≌△CAE,
BD=EA,∠DBA=∠CAE,
∵△ABF和△ACF均为等边三角形,
∴∠ABF=∠CAF=60°,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE,
∵BF=AF
在△DBF和△EAF中,
FB=FA
 ∠FBD=∠FAE 
BD=AE

∴△DBF≌△EAF(SAS),
∴DF=EF,∠BFD=∠AFE,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF为等边三角形.
∴DF=EF.
点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,∠OAB=60°,∠AOB=90°,反比例函数y1=
m
x
的图象经过点A,反比例函数y2=-
3
x
的图象经过点B,则m的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

一次函数y=kx+b的图象与y轴交点的纵坐标为-2,且与两坐标轴围成的直角三角形面积为1,试确定此一次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F.
(1)试说明:AF=FC;
(2)如果AB=3,BC=4,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,为测得某一湖泊的宽度,在A处的正上方G处有一架飞行的飞机,此时正好测得湖泊东岸的点C处的俯角为30°,湖泊西岸的点B处的俯角为60°,此时飞机离地面的高度为900米,则湖泊的宽度是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)计算:(π-3.14)0×(-1)2010+(-
1
3
-2-|
3
-2|+2cos30°;
(2)解方程:
3x-5
x-2
=2+
x+1
2-x

查看答案和解析>>

科目:初中数学 来源: 题型:

(x+3)•(x-3)-(2x-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C
点的俯角β为60°.求建筑物CD的高度(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=3,AC=4,求AB、CD的长.

查看答案和解析>>

同步练习册答案