精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2-2x+6,若A(2,y1)、B(2+m,y2)为其图象上的两点,且y1<y2,则实数m的取值范围是
 
考点:二次函数图象上点的坐标特征
专题:
分析:求出二次函数的对称轴,再比较A、B两点的位置,即可得出正确答案.
解答:解:∵函数对称轴为x=-
-2
2×1
=1,
∴当y1<y2时,
①B在A的右侧时,2+m>2,m>0;
②B在A的左侧0时,2+m<0,m<-2.
故答案为m>0或m<-2.
点评:本题考查了二次函数图象上点的坐标特征,要熟悉二次函数的性质及二次函数的图象.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图△DCE、△ABC均为等边三角形,AD、BE分别交与CE、AC交于点G、F,有下列结论:
(1)△ACD≌△BCE;(2)CF=CG;(3)CD=EF
其中正确的是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2,3,5,7,11,13都是质数,也就是说每个数只以1和它本身为约数,已知一个长方形的长和宽都是质数个单位,并且周长是36个单位,问:这个长方形的面积至少是多少个平方单位?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△ABC中,D为BC边上任意一点,E为AD上任意一点,如图.求证:
S△BED
S△EDC
=
S△ABE
S△AEC
=
S△ABD
S△ADC

查看答案和解析>>

科目:初中数学 来源: 题型:

若一个n边形的边数增加一倍,则内角和将增加
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,
AC
=
CD
,BC=EC,∠CBD=30°.
(1)求证:直线CE是⊙O点切线;
(2)若OC=6,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.求证:∠PMN=∠PNM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,求证:△ACD≌△BCE;
(2)如图2,将图1中△DCE绕点C逆时针旋转n°(0<n<45°),使∠BED=90°,又作△DCE中DE边上的高CM,请完成图2,并判断线段CM、AE、BE之间的数量关系,并说明理由;
(3)如图3,在正方形ABCD中,CD=
5
,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列计算中正确的是(  )
A、6a-5a=1
B、5x-6x=11x
C、m2-m=m
D、-x3-6x3=-7x3

查看答案和解析>>

同步练习册答案