【题目】休闲广场的边缘是一个坡度为i=1:2.5的缓坡CD,靠近广场边缘有一架秋千.秋千静止时,底端A到地面的距离AB=0.5m,B到缓坡底端C的距离BC=0.7m.若秋千的长OA=2m,则当秋千摆动到与静止位置成37°时,底端A′到坡面的竖直方向的距离A′E约为( )(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)
A. 0.4mB. 0.5mC. 0.6mD. 0.7m
【答案】D
【解析】
延长OA与BC交于点B,延长A'E,与BC的延长线交于点F,过点A'作A'H⊥OB于点H.
根据三角函数得到AH,HB,进而得到CF,由,进行计算即可得到答案.
解:如图,延长OA与BC交于点B,延长A'E,与BC的延长线交于点F,过点A'作A'H⊥OB于点H.
在Rt△OHA'中,
,,
∴OH=0.8OA'=0.8×2=1.6(m),A'H=0.6OA'=0.6×2=1.2(m),
∴AH=OA﹣OH=2﹣1.6=0.4(m),HB=HA+AB=0.4+0.5=0.9(m),A'F=HB=0.9(m),BF=HA'=1.2m,
∴CF=BF﹣BC=1.2﹣0.7=0.5(m),
在Rt△EFC中,
,
EF==×0.5=0.2(m),
∴A'E=A'F﹣EF=0.9﹣0.2=0.7(m)
故选:D.
科目:初中数学 来源: 题型:
【题目】矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条笔直的公路上有A、B两地.甲、乙两人同时出发,甲骑电动车从A地到B地,中途出现故障后停车维修,修好车后以原速继续行驶到B地;乙骑摩托车从B地到A地,到达A地后立即按原原速返回,结果两人同时到B地.如图是甲、乙两人与B地的距离y(km)与乙行驶时间x(h)之间的函数图象.
(1)A、B两地间的距离为 km;
(2)求乙与B地的距离y(km)与乙行驶时间x(h)之间的函数关系式;
(3)求甲、乙第一次相遇的时间;
(4)若两人之间的距离不超过10km时,能够用无线对讲机保持联系,请求出乙在行进中能用无线对讲机与甲保持联系的x取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有一个六面分别标有数字1,2,3,4,5,6,且质地均匀的正方体筛子,另有三张正面分别标有1,2,3,的卡片(卡片除数字外,其他都相同),先由小明掷筛子一次,记下筛子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字。
(1)请用列表或树状图的方法,求出筛子向上一面出现的数字与卡片上的数字之积为6的概率;
(2)小明和小王做游戏,约定游戏规则如下:若筛子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若筛子向上一面出现的数字与卡片上的数字之积小于7,则小王赢;问小明和小王谁赢的可能性更大?请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两地之间有一C地,某日早上9点,一辆电力巡查车作例行巡查,查线路是从A地到C地再原路返回A地,全程匀速行驶,调头时间忽略不计.家住C地的陈先生同样是在当天的早上9点出发,驱车前往B地取一份文件,然后返回,经C地前往公司所在地A地.陈先生余程也是匀速行驶,取文件花费了4分钟,设两车之间的距离为ym,出发后的行驶时间为xmin,y与x的关系如图所示.那么当电力巡查车到达C地时,陈先生距A地还有_____m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D是抛物线的顶点.
(1)如图1,P为直线BC上方抛物线上一动点,过点P作PQ∥y轴交BC于点Q.在抛物线的对称轴上有一动点M,在x轴上有一动点N,当6PQ﹣CQ的值最大时,求PM+MN+NB的最小值;
(2)如图2,将△ABC绕点B逆时针旋转90°后得到△A′BC',再将△A′BC′向右平移1个单位得到△A“B′C“,那么在抛物线的对称轴DM上,是否存在点T,使得△A′B′T为等腰三角形?若存在,求出点T到x轴的距离;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,AB=BC,∠B=∠C=90°,P是BC边上一点,AP⊥PD,E是AB边上一点,∠BPE=∠BAP.
(1) 如图1,若AE=PE,直接写出=______;
(2) 如图2,求证:AP=PD+PE;
(3) 如图3,当AE=BP时,连BD,则=______,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com