精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形和正方形中,点上,的中点,交于点0.则的长为__________

【答案】

【解析】

利用中位线的性质,直角三角形斜边上的中线等于斜边的一半,分别求得HOOE的长后即可求得HE的长.

解:∵ACCF分别是正方形ABCD和正方形CGFE的对角线,
∴∠ACD=GCF=45°
∴∠ACF=90°
又∵HAF的中点,
CH=HF
EC=EF
∴点H和点E都在线段CF的中垂线上,
HECF的中垂线,
∴点H和点O是线段AFCF的中点,
OH=AC
RtACDRtCEF中,AD=DC=2CE=EF=3
AC=2CF=3
OE是等腰直角△CEF斜边上的高,
OE=
HE=HO+OE=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E是边AD上的一点,将△CDE沿CE折叠得到△CFE,点F恰好落在边AB上.

1)证明:△AEF∽△BFC

2)若AB=BC=1,作线段CE的中垂线,交AB于点P,交CD于点Q,连结PEPC

①求线段DQ的长.

②试判断△PCE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将四边形ABCD放在每个小正方形的边长为1的网格中,点A.B、C、D均落在格点上.

(Ⅰ)计算AD2+DC2+CB2的值等于_____

(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AD2+DC2+CB2,并简要说明画图方法(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG,AE,FG 分别交射线CD 于点 PH,连结 AH,若 P CH 的中点,则APH 的周长为(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,是等边三角形,点,点,点边上的一个动点(与点不重合).直线是经过点的一条直线,把沿直线折叠,点的对应点是点

1)如图,当时,若直线,求点的坐标;

2)如图,当点边上运动时,若直线,求的面积;

3)当时,在直线变化过程中,求面积的最大值(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形和四边形都是正方形,且

1)如图1,连接.求证:

2)如图2,将正方形绕着点旋转到某一位置时恰好使得.求的度数;

3)在(2)的条件下,当正方形的边长为时,请直接写出正方形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB△ABC外接圆的直径,O为圆心,CHAB,垂足为H,且∠PCA=∠ACH CD平分∠ACB,交⊙O于点D,连接BDAP=2

1)判断直线PC是否为⊙O的切线,并说明理由;

2)若∠P=30°,求ACBCBD的长.

3)若tan∠ACP=,求⊙O半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形中,对角线相交于点,动点从点出发,沿线段的速度向点运动,同时动点从点出发,沿线段支向点运动,当其中一个动点停止时另一个动点也随之停止,设运动时间为(单位:)(),以点为圆心,长为半径的⊙M与射线、线段分别交于点,连接

1)求的长(用含有的代数式表示),并求出的取值范围;

2)当为何值时,线段与⊙M相切?

3)若⊙M与线段只有一个公共点,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,等边ABC,点 E BA 的延长线上,点 D BC 上,且 ED=EC

1)如图 1,求证:AE=DB

2)如图 2,将BCE 绕点 C 顺时针旋转 60°ACF(点 BE 的对应点分别为点 AF),连接 EF.在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对线段长度之差等于 AB 的长.

查看答案和解析>>

同步练习册答案