【题目】已知四边形和四边形都是正方形,且.
(1)如图1,连接、.求证:;
(2)如图2,将正方形绕着点旋转到某一位置时恰好使得,.求的度数;
(3)在(2)的条件下,当正方形的边长为时,请直接写出正方形的边长.
【答案】(1)见解析;(2);(3)
【解析】
(1)根据正方形的性质可得,CG=CE,∠BCD=∠GCE=90°,然后利用SAS即可证出≌,从而得出结论;
(2)连接,由,,得:,利用SAS证出 ,从而证出是等边三角形,得出,即可求出结论;
(3)过点G作GM⊥BC,交BC的延长线于点M,设CM=x,则GM=x,CG=x,在Rt△BGM中,根据勾股定理,列出方程,即可求解.
证明:(1)∵四边形和是正方形
∴,CG=CE,∠BCD=∠GCE=90°
∴∠BCD+DCG=∠GCE+DCG
∴
在和中,
,
∴≌.
∴;
(2)解:如图连接,
,
∴
∵
∴
∴
∴
在和中,
,
∴.
∴,
∴,
∴是等边三角形.
∴;
∵
∴.
(3)解:过点G作GM⊥BC,交BC的延长线于点M,如图2,
∵,
∴∠GCM=45°,
设CM=x,则GM=x,CG=x,
∵正方形的边长为,
∴BC=,BG=BD=4,
∵在Rt△BGM中,BM2+GM2=BG2,
∴,
解得:,(舍)
∴,
即:正方形的边长是:.
科目:初中数学 来源: 题型:
【题目】图1是一种推磨工具模型,图2是它的示意图,已知AB⊥PQ,AP=AQ=3dm,AB=12dm,点A在中轴线l上运动,点B在以O为圆心,OB长为半径的圆上运动,且OB=4dm.
(1)如图3,当点B按逆时针方向运动到B′时,A′B′与⊙O相切,则AA′=__dm.
(2)在点B的运动过程中,点P与点O之间的最短距离为__dm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过,,三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点,使的值最小,求点的坐标;
(3)点为轴上一动点,在抛物线上是否存在一点,使以,,,四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某办公楼AB的右边有一建筑物CD,在建设物CD离地面2米高的点E处观测办公楼顶A点,测得的仰角=,在离建设物CD 25米远的F点观测办公楼顶A点,测得的仰角=(B,F,C在一条直线上).
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校随机抽取九年级部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,学校收集整理数据后,将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:
九年级接受调查的同学共有多少名,并补全条形统计图;
九年级共有500名学生,请你估计该校九年级听音乐减压的学生有多少名;
若喜欢“交流谈心”的5名同学中有三名男生和两名女生,心理老师想从5名同学中任选两名同学进行交流,请用画树状图或列表的方法求同时选出的两名同学都是女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高学生身体素质,某校决定开展足球、篮球、排球、兵乓球等四项课外体育活动,要求全员参与,并且每名学生只能选择其中一项.为了解选择各种体育活动项目的学生人数,该校随机抽取了部分学生进行调查,并绘制出如下两幅不完整的统计图,请根据统计图回答下列问题:
(1)直接写出这次抽样调查的学生人数;
(2)补全条形统计图;
(3)若该学校总人数是1500人,请估计选择篮球项目的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校七、八年级各有300名学生,近期对他们“2020年新型冠状病毒”防治知识进行了线上测试,为了了解他们的掌握情况,从七、八年级各随机抽取了50名学生的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息:
a.七年级的频数分布直方图如下(数据分为5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
b.七年级学生成绩在80≤x<90的这一组是:
80 80.5 81 82 82 83 83.5 84
84 85 86 86.5 87 88 89 89
c.七、八年级学生成绩的平均数、中位数、众数如下:
年级 | 平均数 | 中位数 | 众数 |
七年级 | 85.3 | m | 90 |
八年级 | 87.2 | 85 | 91 |
根据以上信息,回答下列问题:
(1)表中m的值为 ;
(2)在随机抽样的学生中,防治知识成绩为84分的学生,在 年级排名更靠前,理由是 ;
(3)若各年级防治知识的前90名将参加线上防治知识竞赛,预估七年级分数至少达到 分的学生才能入选;
(4)若85分及以上为“优秀”,请估计七年级达到“优秀”的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com