精英家教网 > 初中数学 > 题目详情

【题目】如图,把一个边长为a的正方形分成9个完全相同的小正方形,把最中间的一个小正方形涂成白色(图①),再对其他8个小正方形作同样的分割(分成9个完全相同的小正方形,把最中间的一个小正方形涂成白色(图②),继续同样的方法分割图形(图③),得到一些既复杂又漂亮的图形,它的每一部分放大,都和整体一模一样,它是波兰数学家谢尔宾斯基构造的,也被称为谢尔宾斯基地毯.求:

1)图③中最新的一个最小正方形的边长;

2)图③中所有涂黑部分的面积.

【答案】1a;(2a2

【解析】

1)观察图形的变化:每分割一次新的正方形的边长是上一个正方形边长的,按此规律即可求解;

2)观察图形的变化:图①中涂黑部分所有正方形的面积是a,图②中涂黑部分所有正方形的面积为(2a2,进而求解.

解:(1)观察图形的变化可知:

每分割一次,新的正方形的边长是上一个正方形的边长的

所以图中新的一个最小的正方形的边长为aa

答:图中新的一个最小正方形的边长为a

2)观察图形的变化可知:

中,涂黑部分正方形的面积为a

中,涂黑部分所有正方形的面积为(2a2a2

中,涂黑部分所有正方形的面积为(3a2a2

答:图中,涂黑部分所有正方形的面积为a2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于点,与轴交于两点,其对称轴与轴交于点.

1)求抛物线的解析式和对称轴;

2)在抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标;若不存在,请说明理由;

3)连接,在直线的下方的抛物线上,是否存在一点,使的面积最大?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD内接于⊙OA的中点,AEACA,与⊙OCB的延长线交于点FE,且.

(1)求证:△ADC∽△EBA

(2)如果AB8CD5,求tan∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.

(1)求抛物线y=﹣x2+ax+b的解析式;

(2)当点P是线段BC的中点时,求点P的坐标;

(3)在(2)的条件下,求sin∠OCB的值.

【答案】(1) y=﹣x2+4x﹣3;(2) P的坐标为();(3) .

【解析】分析:(1)将点AB代入抛物线y=-x2+ax+b,解得ab可得解析式;

(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;

(3)由P点的坐标可得C点坐标,ABC的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.

详解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,

解得,a=4,b=﹣3,

∴抛物线的解析式为:y=﹣x2+4x﹣3;

(2)∵点Cy轴上,

所以C点横坐标x=0,

∵点P是线段BC的中点,

∴点P横坐标xP==

∵点P在抛物线y=﹣x2+4x﹣3上,

yP=﹣3=

∴点P的坐标为();

(3)∵点P的坐标为(),点P是线段BC的中点,

∴点C的纵坐标为﹣0=

∴点C的坐标为(0,),

BC==

sinOCB===

点睛:本题主要考查了待定系数法求二次函数解析式,二次函数图像与性质,解直角三角形,勾股定理,利用中点求得点P的坐标是解答此题的关键.

型】解答
束】
24

【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.

(1)求证:△ACF∽△DAE;

(2)若S△AOC=,求DE的长;

(3)连接EF,求证:EF是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.

(1)求证:△ACF∽△DAE;

(2)若S△AOC=,求DE的长;

(3)连接EF,求证:EF是⊙O的切线.

【答案】(1) 见解析; (2)3 ;(3)见解析.

【解析】试题分析:(1)根据圆周角定理得到BAC=90°,根据三角形的内角和得到ACB=60°根据切线的性质得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到结论;

(2)根据SAOC=,得到SACF=,通过ACF∽△DAE,求得SDAE=,过AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;

(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,过OOGEFG,根据全等三角形的性质得到OG=OA,即可得到结论.

试题解析:(1)证明:BCO的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切线,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,过AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFOAOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFOOA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFOOF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切线.

型】解答
束】
25

【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.

(1)填空:点B的坐标为   

(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;

(3)①求证:

②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上点A表示数a,点B表示数bab满足|a20|+b+1020O是数轴原点,点Q从点B出发,以每秒3个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.

1)点A表示的数为   ,点B表示的数为   

2t为何值时,BQ2AQ

3)若在点Q从点B出发的同时,点P从点O出发,以每秒2个单位长度的速度一直沿数轴正方向匀速运动,而点Q运动到点A时,立即改变运动方向,沿数轴的负方向运动,到达点B时停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ6?若存在,求出所有符合条件的t值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)为培养学生数学学习兴趣,某校七年级准备开设神奇魔方魅力数独数学故事趣题巧解四门选修课(每位学生必须且只选其中一门)

(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图,根据该统计图,请估计该校七年级480名学生选数学故事的人数。

(2)学校将选数学故事的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了数学故事,已知小聪不在A班,求他和小慧被分到同一个班的概率(要求列表或画树状图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的面积为20cm2,对角线交于点O;以ABAO为邻边做平行四边形AOC1B,对角线交于点O1;以ABAO1为邻边做平行四边形AO1C2B;…依此类推,则平行四边形AO4C5B的面积为( )

A. cm2 B. cm2 C. cm2 D. cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过ABC的三个顶点,其中点A(0,1),B(9,10),ACx轴,点P是直线AC下方抛物线上的动点。

(1)求抛物线的解析式;

(2)过点P且与y轴平行的直线l与直线ABAC分别交于点E.F,当四边形AECP的面积最大时,求点P的坐标和四边形AECP的最大面积;

(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C.PQ为顶点的三角形与ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案