精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,四边形OABC是矩形,其中点A在x轴的正半轴上,点B的坐标为(4,2),点D为对角线OB上一个动点(不包括端点),∠BCD的平分线交OB于点E.

(1)求线段OB所在直线的函数表达式,并写出CD的取值范围.
(2)当∠BCD的平分线经过点A时,求点D的坐标.
(3)点P是线段BC上的一个动点,求CD十DP的最小值.

【答案】
(1)

解:设线段OB所在直线的函数表达式为y=kx,

把B(4,2)代入,得2=4k,解得k=

∴线段OB所在直线的函数表达式为y= x.

CD的范围: ≤CD<4


(2)

解:如图1中,延长CD交OA于点F,

∵∠ACF=∠ACB=∠CAF,

∴AF=CF,设AF=CF=m,则OF=4﹣m,

∵OF2+OC2=CF2

∴(4﹣m)2+22=m2,解得m=

∴直线CF的解析式为y=﹣ x+2,

解得

∴点D坐标(


(3)

解:如图2中,作点C关于直线OB的对称点F,作FP⊥BC,交OB于D,垂足为P,则点P、D就是所求的点,此时DC+DP=DF+PD=FP最短(垂线段最短).

设直线CF的解析式为y=﹣2x+b,把C(0,2)代入得b=2,

∴直线CF解析式为y=﹣2x+2,设直线CF交OB于点E,

解得

∴点E坐标( ),

∵C、F关于点E对称,

∴点F坐标( ,﹣ ),

∴CD+PD最小值=PF=2+ =


【解析】(1)设线段OB所在直线的函数表达式为y=kx,把B(4,2)代入求出k即可解决问题.(2)如图1中,延长CD交OA于点F,设AF=CF=m,则OF=4﹣m,由OF2+OC2=CF2 , 列出方程求出m,求出直线CF的解析式,解方程组即可解决问题.(3)如图2中,作点C关于直线OB的对称点F,作FP⊥BC,交OB于D,垂足为P,则点P、D就是所求的点,此时DC+DP=DF+PD=FP最短,求出点F坐标即可解决问题.
【考点精析】解答此题的关键在于理解正比例函数的图象和性质的相关知识,掌握正比函数图直线,经过一定过原点.K正一三负二四,变化趋势记心间.K正左低右边高,同大同小向爬山.K负左高右边低,一大另小下山峦,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB⊥BD, = ,将ABCD放置在平面直角坐标系中,且AD⊥x轴,点D的横坐标为1,点C的纵坐标为3,恰有一条双曲线 (k>0)同时经过B、D两点,则点B的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG⊥DE,垂足为G,DG= cm,则EF的长为(

A.2cm
B. cm
C.1cm
D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).

(1)按下列要求作图:
①将△ABC向左平移4个单位,得到△A1B1C1
②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2
(2)求点C1在旋转过程中所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆的直径,点D是 的中点,且AB=4,∠BAC=50°,则AD的长度为cm(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图1和图2两幅尚不完整的统计图中.

(1)B班参赛作品有多少件?
(2)请你将图2的统计图补充完整;
(3)通过计算说明,哪个班的获奖率高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC内接于⊙O,∠BAC的平分线AD交⊙O于点D,交BC于点E,过点D作DF∥BC,交AB的延长线于点F.

(1)求证:△BDE∽∠ADB;
(2)试判断直线DF与⊙O的位置关系,并说明理由;
(3)如图2,条件不变,若BC恰好是⊙O的直径,且AB=6,AC=8,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的材料:
如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1 , x2
① 若x1<x2 , 都有f(x1)<f(x2),则称f(x)是增函数;
②若x1<x2 , 都有f(x1)>f(x2),则称f(x)是减函数.
例题:证明函数f(x)= (x>0)是减函数.
证明:假设x1<x2 , 且x1>0,x2>0
f(x1)﹣f(x2)= = =
∵x1<x2 , 且x1>0,x2>0
∴x2﹣x1>0,x1x2>0
>0,即f(x1)﹣f(x2)>0
∴f(x1)>f(x2
∴函数f(x)= (x>0)是减函数.
根据以上材料,解答下面的问题:
(1)函数f(x)= (x>0),f(1)= =1,f(2)= =
计算:f(3)= , f(4)= , 猜想f(x)= (x>0)是函数(填“增”或“减”);
(2)请仿照材料中的例题证明你的猜想.

查看答案和解析>>

同步练习册答案