精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC的顶点都在方格纸的格点上.

(1) 画出△ABC关于直线MN的对称图形△

(2) 画出△ABC关于点O的中心对称图形△;

(3) 画出△ABC绕点B逆时针旋转900后的图形△

【答案】(1)详见解析;(2)详见解析;(3)详见解析

【解析】

1)根据网格结构找出点ABC关于直线MN的对称点A1B1C1的位置,然后顺次连接即可;
2)根据网格结构找出点ABC关于点O中心对称的点A2B2C2的位置,然后顺次连接即可;
3)根据网格结构找出点AC绕点B逆时针旋转90°后的对应点A3C3的位置,再与点C顺次连接即可.

解:(1)如图所示:A1B1C1即为所求;

2)如图所示:A2B2C2即为所求;

3)如图所示:A3BC3即为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】龟兔赛跑的故事同学们都非常熟悉图中的线段OD和折线OABC表示龟兔赛跑时路程与时间的关系请你根据图中给出的信息解决下列问题

(1)填空:折线OABC表示赛跑过程中 的路程与时间的关系线段OD表示赛跑过程中 的路程与时间的关系赛跑的全程是

(2)兔子在起初每分钟跑 乌龟每分钟爬

(3)乌龟用了 分钟追上了正在睡觉的兔子

(4)兔子醒来以48千米/时的速度跑向终点结果还是比乌龟晚到了05分钟请你算算兔子中间停下睡觉用了多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点P表示广场上的一盏照明灯.

(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);

(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).

(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c经过A(1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.

(1)求经过A,B,C三点的抛物线的函数表达式;

(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;

(3)在(2)的条件下,过点P作PFx轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,∠A30°ADBD4,则平行四边形ABCD的面积等于 ______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某商场计划购进一批两种空气净化装置,每台种设备价格比每台种设备价格多0.7万元,花3万元购买种设备和花7.2万元购买种设备的数量相同.

(1)求种、种设备每台各多少万元?

(2)根据销售情况,需购进两种设备共20台,总费用不高于15万元,求种设备至少要购买多少台?

(3)若每台种设备售价0.6万元,每台种设备售价1.4万元,在(2)的情况下商场应如何进货才能使这批空气净化装置售完后获利最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=x+3与抛物线交于AB两点,点Ax轴上,点B的横坐标为.动点P在抛物线上运动(不与点AB重合),过点Py轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MNy轴在PQ的同侧,连结PM.设点P的横坐标为m

1)求bc的值.

2)当点N落在直线AB上时,直接写出m的取值范围.

3)当点PAB两点之间的抛物线上运动时,设正方形PQMN的周长为C,求Cm之间的函数关系式,并写出Cm增大而增大时m的取值范围.

4)当PQM与坐标轴有2个公共点时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A14),B42),C35)(每个方格的边长均为1个单位长度).

1)请画出将ABC向下平移5个单位后得到的A1B1C1

2)将ABC绕点O逆时针旋转90°,画出旋转后得到的A2B2C2,并直接写出点A旋转到点A2所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角三角形中,两条直角边的长度分别为a和b,斜边长度为c,则a2+b2=c2,即两条直角边的平方和等于斜边的平方,此结论称为勾股定理.在一张纸上画两个同样大小的直角三角形ABC和A′B′C′,并把它们拼成如图所示的形状 (点C和A′重合,且两直角三角形的斜边互相垂直).请利用拼得的图形证明勾股定理.

查看答案和解析>>

同步练习册答案