【题目】定义:有一组对角互补的四边形叫做互补四边形.
概念理解:
①在互补四边形中,与是一组对角,若则 _
②如图1,在中,点分别在边上,且求证:四边形是互补四边形.
探究发现:如图2,在等腰中,点分别在边上, 四边形是互补四边形,求证:.
推广运用:如图3,在中,点分别在边上,四边形是互补四边形,若,求的值.
【答案】(1)①90;②见解析;(2)见解析;(3).
【解析】
(1)①由互补四边形和四边形内角和定理即可求出∠A的度数;
②证明得,进而可得,从而可证明四边形是互补四边形;
(2)先证明得,根据EA=EB可得,根据三角形内角和定理得∠AHB=180°-(),再根据互补四边形的定义可得结论;
(3)如图,作于点交的延长线于点则,由四边形CEDH是互补四边形可得,进而证明,,求得,再证明即可得到结论.
(1)①解:∵四边形ABCD是互补四边形,
∴∠B+∠D=180°,
∵∠B:∠C:∠D=2:3:4,
∴∠B=60°,∠C=90°,
又∵∠A+∠B+∠C+∠D=360°,
∴∠A=180°-∠C=90°;
故答案为:90;
②证明:
又
四边形是互补四边形.
证明:
四边形是互补四边形,
如图,作于点交的延长线于点
则
四边形是互补四边形,
.
在中,
设则
.
,
科目:初中数学 来源: 题型:
【题目】(12分)已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形DEBF是平行四边形;
(2)当DE=DF时,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如今,不少人在购买家具时追求简约大气的风格,图1所示的是一款非常畅销的简约落地收纳镜,其支架的形状固定不变,镜面可随意调节,图2所示的是其侧面示意图,其中为镜面,为放置物品的收纳架,为等长的支架,为水平地面,已知,.(结果精确到.参考数据:)
(1)求支架顶点到地面的距离.
(2)如图3,将镜面顺时针旋转求此时收纳镜顶部端点到地面的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了调查学生对卫生健康知识,特别是疫情防控下的卫生常识的了解,现从九年级名学生中随机抽取了部分学生参加测试,并根据测试成绩绘制了如下频数分布表和扇形统计图(尚不完整).
组别 | 成绩/分 | 人数 |
第组 | ||
第组 | ||
第组 | ||
第组 | ||
第组 |
请结合图表信息完成下列各题.
(1)表中a的值为_____,b的值为______;在扇形统计图中,第组所在扇形的圆心角度数为______°;
(2)若测试成绩不低于分为优秀,请你估计从该校九年级学生中随机抽查一个学生,成绩为优秀的概率.
(3)若测试成绩在分以上(含分)均为合格,其他为不合格,请你估计该校九年级学生中成绩不合格的有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游泳池每次换水前后水的体积基本保持不变,当该游泳池以每小时300立方米的速度放水时,经3小时能将池内的水放完.设放水的速度为x立方米/时,将池内的水放完需y小时.已知该游泳池每小时的最大放水速度为350立方米
(1)求y关于x的函数表达式.
(2)若该游泳池将放水速度控制在每小时200立方米至250立方米(含200立方米和250立方米),求放水时间y的范围.
(3)该游泳池能否在2.5小时内将池内的水放完?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,航模小组用无人机来测量建筑物BC的高度,无人机从A处测得建筑物顶部B的仰角为45°,测得底部C的俯角为60°,若此时无人机与该建筑物的水平距离AD为30m,则该建筑物的高度BC为_____m.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,在矩形ABCD中,AB=4,AD=10,在BC边上是否存在点P,使∠APD=90°,若存在,请用直尺和圆规作出点P并求出BP的长.(保留作图痕迹)
(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为AB,AC的中点,当AD=6时,BC边上是否存在一点Q,使∠EQF=90°,求此时BQ的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com