【题目】如图1,AOBC的顶点A、B、C在⊙O上,点D、E分别在BO、AO的延长线上,且OD=2OB,OE=2OA,连接DE.
(1)求∠AOB的度数;
(2)求证:DE是⊙O的切线;
(3)如图2,设直线DE与⊙O相切于点F,连接AD、BF,判断线段AD与BF的位置关系和数量关系,并证明你的结论.
【答案】(1)120°;(2)证明见解析;(3)AD∥BF,且AD=BF.
【解析】
(1)连接OC,根据平行四边形的性质结合半径相等可得出△AOC和△BOC均为等边三角形,进而可得出∠AOC=∠BOC=60°,将其代入∠AOB=∠AOC+∠BOC中即可求出结论;(2)由(1)可知:四边形AOBC为菱形,连接CO,并延长交DE于点M,连接AB交OC于点N,由OD=2OB,OE=2OA结合对顶角相等可得出△DOE∽△BOA,根据相似三角形的性质可得出DE=2AB,OM=2ON及∠ODE=∠OBA,由内错角相等两直线平行可得出AB∥DE,由菱形的性质可得出ON⊥AB,OC=2ON,进而可得出OM⊥DE,OM=OC,再根据切线的定义即可证出DE是⊙O的切线;(3)连接AB,OF,根据切线的性质可得出OF⊥DE,结合OD=OE可得出DF=DE=AB,结合AB∥DE可得出四边形ADFB为平行四边形,再利用平行四边形的性质可得出AD∥BF且AD=BF.
(1)连接OC,如图3所示.
∵四边形AOBC为平行四边形,
∴AC=OB,AO=CB.
又∵OA=OC=OB,
∴△AOC和△BOC均为等边三角形,
∴∠AOC=∠BOC=60°,
∴∠AOB=∠AOC+∠BOC=120°.
(2)证明:由(1)可知:四边形AOBC为菱形.
连接CO,并延长交DE于点M,连接AB交OC于点N,如图4所示.
∵OD=2OB,OE=2OA,∠DOE=∠BOA,
∴△DOE∽△BOA,
∴DE=2AB,OM=2ON,∠ODE=∠OBA,
∴AB∥DE.
∵四边形AOBC为菱形,
∴ON⊥AB,OC=2ON,
∴OM⊥DE,OM=OC,
∴DE是⊙O的切线.
(3)解:AD∥BF,且AD=BF.
证明:在图2中,连接AB,OF,如图所示.
∵直线DE与⊙O相切于点F,
∴OF⊥DE.
∵OD=OE,
∴DF=DE=AB.
又∵AB∥DE,
∴四边形ADFB为平行四边形,
∴AD∥BF,且AD=BF.
科目:初中数学 来源: 题型:
【题目】为弘扬中华传统文化,某校举办了学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式为“单人组”和“双人组”.小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如题图,已知A(-4,2),B(n,-4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.
(1)求m,n的值;
(2)求一次函数的关系式;、
(3)结合图象直接写出一次函数小于反比例函数的x的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=5,AC=4,BC=3,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.
(1)在平行四边形、矩形、菱形、正方形中,一定是“十字形”的有 .
(2)如图1,在四边形ABCD中,AB=AD,且CB=CD
①证明:四边形ABCD是“十字形”;
②若AB=2.∠BAD=60°,∠BCD=90°,求四边形ABCD的面积.
(3)如图2.A、B、C、D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,若∠ADB﹣∠CDB=∠ABD﹣∠CBD.满足AC+BD=3,求线段OE的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E为正方形ABCD边AB上的一点,且AB=3,BE=1.将△CBE翻折得到△CB'E,连接并延长DB'与CE延长线相交于点F,连接AF,则AF的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆O通过五边形OABCD的四个顶点.若弧ABD=150°,∠A=65°,∠D=60°,则弧BC的度数为何?( )
A. 25 B. 40 C. 50 D. 55
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2﹣(m+3)x+m2﹣12与x轴交于A(x1,0)、B(x2,0)两点,且x1<0,x2>0,抛物线与y轴交于点C,OB=2OA.
(1)求抛物线解析式;
(2)已知直线y=x+2与抛物线相交于M、N两点,分别过M、N作x轴的垂线,垂足为M1、N1,是否存在点P,同时满足如下两个条件:
①P为抛物线上的点,且在直线MN上方;
②:=6:35
若存在,则求点P横坐标t,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+b与反比例函数(x>0)的图象交于点A(m,3)和B(3,1).
(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;
(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com