精英家教网 > 初中数学 > 题目详情
如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.试判断△GAB的形状,并说明理由.
考点:等腰梯形的性质
专题:
分析:根据等腰梯形的性质得出∠D=∠C,证△ADE≌△BCF,推出AE=BF,∠DEA=∠CFB,求出∠GEF=∠GFE,推出GE=GF即可.
解答:解:△GAB是等腰三角形,
理由是:∵在等腰梯形ABCD中,AB∥DC,
∴∠D=∠C,
在△ADE和△BCF中
DE=CF
∠D=∠C
AD=BC

∴△ADE≌△BCF,
∴AE=BF,∠DEA=∠CFB,
∵∠DEF=∠DEA,∠GFE=∠CFB,
∴∠GEF=∠GFE,
∴GE=GF,
∵AE=BF,
∴GA=GB,
∴△GAB是等腰三角形.
点评:本题考查了等腰梯形的性质,等腰三角形的判定,全等三角形的性质和判定等知识点的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为了了解汇文实验学校七年级学生课外阅读情况,现在对450名七年级学生进行调查,本次出样调查活动属于
 
(填普查或抽样调查).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,D、E分别是AB、AC的中点,CD⊥AB于D,BE⊥AC于E.
(1)求证:AC=AB.
(2)求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

有一块直角三角形绿地ABC,∠ACB=90°,经测量AC=80m,BC=60m,现计划将绿地扩展为以AB为一条边的等腰△ABD,且D点在线段BC的延长线上,求扩展后绿地的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程组:
x-3
2
-3(y-1)=0
2(x-3)-2(y-1)=10

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,∠ABC=60°,且AB=BC,∠MAN=60°,请探索BM,DN与AB的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

用公式法解方程:3x2+x-5=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a、b、c为△ABC的三边长,且a+b+c=36,
a
3
=
b
4
=
c
5
,求△ABC三边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)若sinα=0.5138,则锐角α=
 

(2)若2cosβ=0.7568,则锐角β=
 

(3)若tanA=37.50,则∠A=
 
.(结果精确到1〞)

查看答案和解析>>

同步练习册答案