【题目】据我囯古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三,股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.
(应用举例)
观察3,4,5; 5,12,13; 7,24,25;…
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股,弦;勾为5时,股,弦;
请仿照上面两组样例,用发现的规律填空:
(1)如果勾为7,则股24=__________;弦25=___________.
(2)如果勾用(,且为奇数)表示时,请用含有的式子表示股和弦,则股=________;弦=_______.
(3)继续观察①4,3,5;②6,8,10;③8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.请你直接用(为偶数且)的代数式来表示直角三角形的另一条直角边和弦的长.
科目:初中数学 来源: 题型:
【题目】已知关于的二次函数
(1)当时,求该函数图像的顶点坐标.
(2)在(1)条件下,为该函数图像上的一点,若关于原点的对称点也落在该函数图像上,求的值
(3)当函数的图像经过点(1,0)时,若是该函数图像上的两点,试比较与的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天) | 1 | 2 | 3 | 10 | … |
日销售量(n件) | 198 | 196 | 194 | ? | … |
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天) | 1≤x<50 | 50≤x≤90 |
销售价格(元/件) | x+60 | 100 |
(1)求出第10天日销售量;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合.若∠CEF=50°,则∠AOF的度数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知R△ABDC中,∠C=90°,AD、BE是角平分线,它们相交于P,PF⊥AD于P交BC的延长线于F,交AC于H.
(1)求证:AH+BD=AB;
(2)求证:PF=PA.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,直线y=﹣2x+b与反比例函数y=交于点A、B,与x轴交于点C.
(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>的解.
(2)求sin∠OCB的值.
(3)若CB﹣CA=5,求直线AB的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.
(1)求证:∠F+∠FEC=2∠A;
(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A的坐标(0,4),C的坐标为(8,0),把矩形折叠,使点C与点A重合,折痕为DE.
求出点E的坐标.
(2)点M为OC的中点,点P为线段AB上一动点,作直线EP,分别过点O、C作直线EP的垂线,垂足分别为点F、G.求证:MF=MG
(3)在(2)的条件下,当△FMG为等腰直角三角形时,请直接写出此时直线EP的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点在第一象限,且,点的坐标为,设的面积为,
(1)当点的横坐标为1时,试求的面积.
(2)求S关于x的函数表达式及自变量x的取值范围.
(3)试判断的面积能否大于6,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com