【题目】如图,点A(-3,0)、点B(0,),直线与x轴、y轴分别交于点D、C,M是平面内一动点,且∠AMB=60°,则MCD面积的最小值是 ________.
【答案】
【解析】
由直线方程求出点D、C的坐标,由已知M是平面内一动点,且∠AMB=60知点M在ΔABM的外接圆上,由已知推导出AB∥CD,则可知要使ΔMCD面积最小,只需点M在AB的垂直平分线上,进而证得ΔABM是等边三角形,通过推理求出点M坐标,即可求得面积最小值.
∵M是平面内一动点,且∠AMB=60,
∴点M在ΔABM的外接圆上,
∵直线与x轴、y轴分别交于点D、C,
∴C(0,),D(4,0),
∴OC=,OD=4,
∴tan∠ODC=,
∴∠ODC=60,
∵点A(-3,0)、点B(0,),
∴OA=3,OB=,
∴tan∠OAB=,且AB=,
∴∠OAB=60,
∴AB∥CD ,
∴当M在AB的垂直平分线上时,ΔMCD的面积最小,此时AM=BM,
∵∠AMB=60,
∴ΔAMB是等边三角形,
∴∠BAM=60,
∴点M在x轴上,且AM=AB=6,
∴点M(3,0)
∴MD=1,
∴ΔMCD的面积最小值为,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于,两点.
(1)反比例函数的解析式为____________,点的坐标为___________;
(2)观察图像,直接写出的解集;
(3)是第一象限内反比例函数的图象上一点,过点作轴的平行线,交直线于点,连接,若的面积为3,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,CD是中线,,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AE交于点M,DE与BC交于点N.
(1)如图1,若,求证:;
(2)如图2,在绕点D旋转的过程中,试证明恒成立;
(3)若,,求DN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,点A在第一象限,点B在x轴的正半轴上,点G为△OAB的重心,连接BG并延长,交OA于点C,反比例函数y=(k>0)的图象经过C,G两点.若△AOB的面积为6,则k的值为( )
A.B.C.D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明投资销售一种进价为每件20元的护眼台灯.经过市场调研发现,每月销售的数量y(件)是售价x(元/件)的一次函数,其对应关系如表:
x/(元/件) | 22 | 25 | 30 | 35 | … |
y/件 | 280 | 250 | 200 | 150 | … |
在销售过程中销售单价不低于成本价,物价局规定每件商品的利润不得高于成本价的60%,
(1)请求出y关于x的函数关系式.
(2)设小明每月获得利润为w(元),求每月获得利润w(元)与售价x(元/件)之间的函数关系式,并确定自变量x的取值范围.
(3)当售价定为多少元/件时,每月可获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.
(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB, AC上,若BC=6,AD=4,求正方形PQMN的边长.
(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′在BC边上,N′在△ABC内,连结B N′并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.小波把线段BN称为“波利亚线”.
(3)推理:证明图2中的四边形PQMN 是正方形.
(4)拓展:在(2)的条件下,于波利业线B N上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.
请帮助小波解决“温故”、“推理”、“拓展”中的问题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:
(1)哪个小组的数据无法计算出河宽?
(2)请选择其中一个方案及其数据求出河宽(精确到0.1m).
(参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,是直径,是切线,点为切点.
(1)求证:;
(2)如图,连接交于点,连接并延长,交于点,求证:;
(3)如图,延长交于点连接过点作,交的延长线于点.若 求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com