【题目】如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ABD=60°,那么∠BAE的度数是( )
A. 40°B. 55°C. 75°D. 80°
科目:初中数学 来源: 题型:
【题目】如图,边长为1cm的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上。动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.则线段OE长度的最小值为______cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上点,且满足AB2=DB·CE.
(1)求证:△ADB∽△EAC;
(2)若∠BAC=40°,求∠DAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一条自南向北的大道上有O、A两个景点,O、A相距20km,在O处测得另一景点C位于点O的北偏东37°方向,在A处测得景点C位于点A的南偏东76°方向,且A、C相距13km .
(1)求:①A到OC之间的距离;
②O、C两景点之间的距离;
(2)若在O处测得景点B 位于景点O的正东方向10km,求B、C两景点之间的距离.(参考数据:tan37°=0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,AC=BC=2,M是边AC的中点,于H.
(1)求MH的长度;
(2)求证:;
(3)若D是边AB上的点,且为等腰三角形,直接写出AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:如图①,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,以点D为顶点作正方形DFGE,使点A、C分别在DE和DF上,连接BE、AF.则线段BE和AF数量关系_____.
(2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.
(3)解决问题:若BC=DF=2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=3,BE=,求半圆和菱形ABFC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c经过点B(0,3)和点A(3,0).
(1)求抛物线的函数表达式和直线的函数表达式;
(2)若点P是抛物线落在第一象限,连接PA,PB,求△PAB的面积S的最大值及此时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com