精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是(  )

A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF

【答案】A

【解析】分析:当AB=BC时,四边形DBFE是菱形.根据三角形中位线定理证明即可;当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,由此即可判断;

详解:当AB=BC时,四边形DBFE是菱形;

理由:∵点D、E、F分别是边AB、AC、BC的中点,

DEBC,EFAB,

∴四边形DBFE是平行四边形,

DE=BC,EF=AB,

DE=EF,

∴四边形DBFE是菱形.

B正确,不符合题意,

BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,

EF=FC,可证EF=BF,可得四边形DBFE是菱形,

C、D不符合题意,

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图AB分别为数轴上的两点,点A对应的数为-20,点B对应的数为120.

(1)请写出线段AB的中点C对应的数.

(2)P从点B出发,以3个单位/秒的速度向左运动,同时点Q从点A出发,以2个单位/秒的速度向右运动,当点PQ重合时对应的数是多少?

(3)(2)的条件下,PQ两点运动多长时间相距50个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大课间是学校的校体课程之一,涉及的范围广,内容繁多。某校根据实际情况决定开设:乒乓球,:篮球,:跑步,:跳绳四种运动项目,为了了解学生最喜欢哪一项运动,随机抽取了600名学生进行调查,并将调查结果绘制成如下的统计图,结合图中信息解答下列问题:

1)补全条形统计图;

2)制作扇形统计图;

3)若该校有学生2400人,请问:喜欢打乒乓球的学生人数大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知RtΔABC,C=90°,D为BC的中点.以AC为直径的圆O交AB于点E.

(1)求证:DE是圆O的切线.

(2)若AE:EB=1:2,BC=6,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】十一期间,某风景区在天中每天游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)

日期

人数变化

单位:万人

-1.2

1)若日的游客人数记为,请用含的代数式表示日的游客人数?

2)请判断七天内游客人数最多的是哪天?请说明理由.

3)此风景区一方面给广大市民提供一个休闲游玩的好去处;另一方面拉动了内需,促进了消费.若日的游客人数为万人,进园的人每人平均消费60元,问十一期间104日游园人员在此风景区的总消费是多少元?(用科学记数法表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A=2x2+3xy-2x-1,B=-x2+xy-1,且3A+6B的值与x无关,求y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,则第2013次输出的结果为(   )

A.6B.3C.D.3×1003

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】12分)如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为am,计算:

1)窗户的面积;

2)窗框的总长;

3)若a1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=45°,ADBC于点DBEAC于点E,点FAB的中点, ADFEBE分别交于点GH,∠CBE=∠BAD.有下列结论:①FD=FE;② AH=2BD ③AD·BC=AE·AB; ④2CD2=EH2.其中正确的结论有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

同步练习册答案