精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为2E在正方形外,,过DH,直线DHEC交于点M,直线CE交直线AD于点,则下列结论正确的是(  )

;②;③;④若PD=3AD,则MD=

A.1B.2C.3D.4

【答案】C

【解析】

根据正方形的性质,利用全等的判定和性质、相似的判定和性质、垂直平分线的判定性质、勾股定理等知识对四个结论一一判断即可.

在正方形ABCD中,

AD=DC

DE=DC

AD=DE

∴∠DAE=DEA

∴①正确;

AD=DEDHAE

DMAE的垂直平分线,

AM=EM

∴△AMD≌△EMD

∴∠MAD=∠MED

DE=DC

∴∠DCE=∠MED

∴∠MAD=∠DCE

即∠MAH+DAH=DME+CDM

∵∠DAH+ADH=90°

CDM+ADH=90°

∴∠DAH=CDM

∴∠MAH=DME

AM=EM,

∴∠MAH=MEH

∴∠DME=MEH

DHAE

∴∠DME=MEH=45°

故②正确;

EP上截取ENMC,则△DCM≌△DEN

∴∠DNM=DME=45°

∴△DMN是等腰直角三角形,

MN=ME+EN=AM+MC

故③正确;

PD=3AD,AD=2,

PD=6,PA=8,

DMAE的垂直平分线,

且∠DME=45°

∴∠AMP=90°

∴△PDC∽△PMA

,

RtPDC中, PC==2,

RtPAM中,AM=,PM=,

CM=,

,

DM==.

故④错误.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,动点PB点出发,沿B→C→D→A匀速运动,设点P运动的路程为x△ABP的面积为y,图象如图2所示.

1)当点P运动的路程x=4时,△ABP的面积为y=

2)求:线段AB的长;

3)求:梯形ABCD的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列两个三角形中,一定全等的是()

A. 两个等边三角形

B. 有一个角是,腰相等的两个等腰三角形

C. 有一条边相等,有一个内角相等的两个等腰三角形

D. 有一个角是,底相等的两个等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=

(1)求反比例函数的解析式;

(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)如图,在五边形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD

(1)求证:ABC≌△AED;

(2)当B=140°时,求BAE的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:

根据以上提供的信息,解答下列问题:

(1)______,______,______;

(2)补全上面的条形统计图;

(3)若该校共有学生1000名.根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知;如图1,菱形ABCD的边ABx轴上,点B的坐标为,点Cy轴上,.

(1)求点A的坐标;

(2)如图2,连接AC,点P为△ACD内一点,BPAC交于点G,点EF分别在线段APBP上,且.,求的值;

(3)如图3,在(2)的条件下,当时,试判断△PAF形状并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BDE,如果∠BAC60°,∠ACE24°,那么∠ABC的大小是(  )

A.32°B.56°C.64°D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:()如果我们能找到两个实数xy使,这样,那么我们就称和谐二次根式,则上述过程就称之为化简和谐二次根式”.

例如:.

()在进行二次根式的化简与运算时,我们有时还会碰上如一样的式子,其实我们还可以将其进一步化简:,那么我们称这个过程为分式的分母有理化.

根据阅读材料解决下列问题:

(1)化简和谐二次根式:①___________,②___________

(2)已知,求的值;

(3)的小数部分为,求证:.

查看答案和解析>>

同步练习册答案