【题目】如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是( )
A. B. C. D.
【答案】B
【解析】∵EF是点B、D的对称轴,∴△BFE≌△DFE,∴DE=BE.
∵在△BDE中,DE=BE,∠DBE=45°,
∴∠BDE=∠DBE=45°,∴∠DEB=90°,∴DE⊥BC.
在等腰梯形ABCD中,∵=,
∴设AD=1,BC=4,过A作AG⊥BC于G,
∴四边形AGED是矩形,∴GE=AD=1,
∵Rt△ABG≌Rt△DCE,∴BG=EC=1.5,
∴AG=DE=BE=2.5,∴AB=CD==,
∵∠ABC=∠C=∠FDE,∠CDE+∠C=90°,
∴∠FDE+∠CDE=90°,
∴∠FDB+∠BDC+∠FDB=∠FDB+∠DFE=90°,∴∠BDC=∠DFE,
∵∠DEF=∠DBC=45°,∴△BDC∽△DEF,
∴,∴DF=,∴BF=,
∴AF=AB﹣BF=,∴=.
故选B.
科目:初中数学 来源: 题型:
【题目】某校八年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数与()在第一象限图像的性质,经历了如下探究过程:
操作猜想:(1)如图1,当,时,在y轴的正半轴上取一点A作x轴的平行线交于点B,交于点C.当OA=1时,= ;当OA=3时,= ;当OA=a时,猜想= .
数学思考:(2)在y轴的正半轴上任意取点A作x轴的平行线,交于点B、交于点C,请用含、的式子表示的值,并利用图2加以证明.
推广应用:(3)如图3,若,,在y轴的正半轴上分别取点A、D(OD>OA)作x轴的平行线,交于点B、E,交于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学组织全体学生参加“献爱心”公益活动,为了了解九年级学生参加活动情况,从九年级学生着中随机抽取部分学生进行调查,统计了该天他们打扫街道,去敬老院服务和到社区文艺演出的人数,并绘制了如下不完整的条形统计图和扇形统计图,其中到社区文艺演出的人数占所调查的九年级学生人数的,请根据两幅统计图中的信息,回答下列问题:
(1)本次调查共抽取了多少名九年级学生?
(2)补全条形统计图.
(3)若该中学九年级共有1500名学生,请你估计该中学九年级去敬老院的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面推理过程:
如图,已知:DE∥BC,DF、BE分别平分∠ADE、∠ABC.
求证:∠FDE=∠DEB
证明:∵DE∥BC(已知)
∴∠ADE=∠ ① ( ② )
∵DF、BE分别平分∠ADE、∠ABC,(已知)
∴∠ADF=∠ ③ ( ④ )
∠ABE=∠ ⑥ ( ⑤ )
∴∠ADF=∠ABE(等量代换)
∴DF∥ ( ⑦ )
∴∠FDE=∠DEB( ⑧ )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:AF平分∠BAE,CF平分∠DCE.
(1)如图①,已知AB∥CD,求证:∠AEC=∠C-∠A;
(2)如图②,在(1)的条件下,直接写出∠E与∠F的关系.
∠E= (用含有∠F的式子表示)
(3)如图③,BD⊥AB,垂足为B,∠BDC=110°,∠AEC=40°,求∠AFC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:点D是线段BC的中点;
(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验中学地理社团学生在5名地理老师的带领下去黄河风景区进行参观考察,景区的门票为每人40元.现有两种优惠方案.甲方案:带队教师免费,学生按9折收费;乙方案:师生都8折收费.
(1)若有名学生,用代数式表示两种优惠方案各需多少元?
(2)当为何值时,两种优惠方案收费相同?
(3)当时,采用哪种方案优惠?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=6,AC=10,∠BAC和∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,那么EF的长为( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923086297137152/1923946164379648/STEM/8dc0999226e6439d82d3fa2c2424ef2e.png]
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.
(1)求证:四边形ADCE的是矩形;
(2)若AB=17,BC=16,求四边形ADCE的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com