【题目】解下列方程
(1)(x﹣2)2=1;
(2)x(x﹣6)=6;
(3)x2+4x﹣32=0;
(4)x(x+4)=﹣3(x+4).
【答案】(1)x1=3,x2=1;(2)x1=3+,x2=3﹣;(3)x1=﹣8,x2=4;(4)x1=﹣4,x2=﹣3
【解析】
(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;
(2)整理后求出b2﹣4ac的值,再用公式法求出即可;
(3)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
(4)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
解:(1)(x﹣2)2=1
开方得:x﹣2=±1,
解得:x1=3,x2=1;
(2)x(x﹣6)=6,
整理得:x2﹣6x﹣6=0,
b2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,
x=,
x1=3+,x2=3﹣;
(3)x2+4x﹣32=0,
(x+8)(x﹣4)=0,
x+8=0,x﹣4=0,
x1=﹣8,x2=4;
(4)x(x+4)=﹣3(x+4),
x(x+4)+3(x+4)=0,
(x+4)(x+3)=0,
x+4=0,x+3=0,
x1=﹣4,x2=﹣3.
科目:初中数学 来源: 题型:
【题目】某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的.在销售过程中发现,这种儿童玩具每天的销售量(件与销售单价(元满足一次函数关系.当销售单价为35元时,每天的销售量为350件;当销售单价为40元时,每天的销售量为300件.
(1)求与之间的函数关系式.
(2)当销售单价为多少时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E为CD上一点,若△ADE沿直线AE翻折,使点D落在BC边上点处,F为AD上一点,且,EF与BD相交于点G,与BD相交于点H,,HG=2,则BD=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若整数a既使关于x的分式方程﹣=1的解为非负数,又使不等式组有解,且至多有5个整数解,则满足条件的a的和为( )
A.﹣5B.﹣3C.3D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x+与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,抛物线的对称轴与直线AC交于点E.
(1)若点P为直线AC上方抛物线上的动点,连接PC,PE,当△PCE的面积S△PCE最大时,点P关于抛物线对称轴的对称点为点Q,此时点T从点Q开始出发,沿适当的路径运动至y轴上的点F处,再沿适当的路径运动至x轴上的点G处,最后沿适当的路径运动至直线AC上的点H处,求满足条件的点P的坐标及QF+FG+AH的最小值.
(2)将△BOC绕点B顺时针旋转120°,边BO所在直线与直线AC交于点M,将抛物线沿射线CA方向平移个单位后,顶点D的对应点为D′,点R在y轴上,点N在坐标平面内,当以点D′,R,M,N为顶点的四边形是菱形时,请直接写出N点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c﹣a=n;③抛物线另一个交点(m,0)在﹣2到﹣1之间;④当x<0时,ax2+(b+2)x<0;⑤一元二次方程ax2+(b﹣)x+c=0有两个不相等的实数根其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.
(1)BF和DE有怎样的数量关系?请证明你的结论;
(2)在其他条件都保持不变的是情况下,当点E运动到AC中点时,四边形AFBE是什么特殊四边形?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Q是上一定点,P是弦AB上一动点,C为AP中点,连接CQ,过点P作交于点D,连接AD,CD.
已知,设A,P两点间的距离为,C,D两点间的距离为.
(当点P与点A重合时,令y的值为1.30)
小荣根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探宄.
下面是小荣的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值:
(2)建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;
(3)结合函数图象,解决问题:当时,AP的长度约为__________cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com