精英家教网 > 初中数学 > 题目详情

【题目】当你去看电影的时候,你想坐得离屏幕近一些,可是又不想为了看屏幕边缘的镜头不停地转动眼睛.如图所示,点AB分别为屏幕边缘两点,若你在P点,则视角为APB.如果你觉得电影院内P点是观看的最佳位置,可是已经有人坐在那了,那么你会找到一个位置Q,使得在QP两点有相同的视角吗?请在图中画出来(保留画图痕迹,不写画法).

【答案】详见解析.

【解析】

AB,AP的中垂线,找到交点O,然后以O为圆心,OP长为半径做三角形ABP的外接圆,圆上每一点与A,B的连线所成的角都与∠APB相等,找到一个和P点同侧的Q点连接AQ,BQ即可.

ABAP的中垂线,交点为O,以O为圆心,OP长为半径做三角形ABP的外接圆,

在圆上P点同侧找一点Q,连接AQBQ,则点Q即可所求点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是   

(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=ax2+bx+c(a≠0)的图象如图,下列5个结论,其中正确的结论有(  )

①abc<0

②3a+c>0

③4a+2b+c<0

④2a+b=0

⑤b2>4ac

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBCAD2BDCD

(1)求证:∠BAC=90°;

(2)若BD=2,AC,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下表:

则一元二次方程x2-2x-2=0在精确到0.1时一个近似根是______,利用抛物线的对称性,可推知该方程的另一个近似根是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线上部分点的横坐标,纵坐标的对应值如下表:

小聪观察上表,得出下面结论:抛物线与轴的一个交点为函数的最大值为;③抛物线的对称轴是;④在对称轴左侧,增大而增大.其中正确有(

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某大学的楼门是一抛物线形水泥建筑物,大门的地面宽度为,两侧距离地面高处各有一个挂校名横匾用的铁环,两铁环的水平距离为,则校门的高约为(精确到,水泥建筑物的厚度忽略不计)( )

A. 9.2m B. 9.1m C. 9.0m D. 8.9m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知MNEFBC,点AD为直线MN上的两动点,ADaBCbAEEDmn

(1)当点AD重合,即a=0(如图1),试求EF.(用含mnb的代数式表示)

(2)请直接应用(1)的结论解决下面问题:当AD不重合,即a≠0,

如图2这种情况时,试求EF.(用含abmn的代数式表示)

  1

   2

   3

如图3这种情况时,试猜想EFab之间有何种数量关系?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的结论有(  )

A. ①③ B. ②③ C. ①④ D. ②④

查看答案和解析>>

同步练习册答案