精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,以为直径的与边分别交于两点,过点于点

1)判断的位置关系,并说明理由;

2)求证:的中点;

3)若,求的长.

【答案】1相切,理由见解析;(2)详见解析;(3

【解析】

1)连结,如图1,先利用AB是圆的直径得到,再根据等腰三角形的性质得,然后利用三角形中位线定理可得,而,进一步即可证得结论;

2)连结,如图2,根据圆内接四边形的性质和等腰三角形的性质可得,从而DE=DC,然后根据等腰三角形三线合一的性质即可证得结论;

3)易得,利用余弦的定义,分别在中计算出ACCH的长,则CE即可求出,然后计算即可得到的长.

解:(1相切.理由如下:

连结,如图1,∵为直径,∴,即

,∴

,∴的中位线,∴

,∴,∴的切线;

2)证明:连结,如图2

∵四边形的内接四边形,∴

,∴,∴,∴DE=DC.

,∴,即的中点;

3)解:如图2,在中,∵,∴.

中,∵,∴,∴

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD的周长是48cmAEBC,垂足为EAFCD,垂足为F,∠EAF2C

1)求∠C的度数;

2)已知DF的长是关于x的方程x25xa0的一个根,求该方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,连接AC,将绕点A逆时针旋转α,连接CFOCF的中点,连接OEOD

1)如图1,当时,请直接写出OEOD的关系(不用证明).

2)如图2,当时,(1)中的结论是否成立?请说明理由.

3)当时,若,请直接写出点O经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)在ABC中,∠BAC=60°BC=4,则ABC面积的最大值是

2)已知:ABC,用无刻度的直尺和圆规求作DBC,使∠BDC+A=180°,且BD=DC.(注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注,作出一个符合题意的三角形即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图象与轴分别交于两点,与轴交于点,.则由抛物线的特征写出如下结论:①;②;③;④.其中正确的个数是()

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图象如图所示,对称轴是直线,下列结论:①;②;③;④;⑤方程有一正一负两个实数解.其中结论正确的个数为(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.

1)求出yx的函数关系式,并写出自变量x的取值范围.

2)当销售单价为多少元时,销售这种童装每月可获利1800元?

3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形与四边形都是正方形.

1)当正方形绕点在平面内旋转时,有怎样的数量和位置关系?并证明你的结论:

2)若,正方形绕点旋转,当点转到直线上时,恰好是,试问:当点转到直线或直线上时,求的长(本小题画出图形并写出结论,不必写出过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.

(1)求之间的函数关系式,并写出自变量的取值范围;

(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案