精英家教网 > 初中数学 > 题目详情

【题目】如图,BD为圆O的直径,直线ED为圆O的切线,AC两点在圆上,AC平分∠BAD且交BDF点.若∠ADE19°,则∠AFB的度数为何?(  )

A. 97° B. 104° C. 116° D. 142°

【答案】C

【解析】

先根据直径所对的圆周角为直角得出∠BAD的度数,根据角平分线的定义得出∠BAF的度数,再根据弦切角等于它所夹弧对的圆周角,得出∠ABD的度数,最后利用三角形内角和定理即可求出∠AFB的度数.

∵BD是圆O的直径,
∴∠BAD=90°,
又∵AC平分∠BAD,
∴∠BAF=∠DAF=45°,
∵直线ED为圆O的切线,
∴∠ADE=∠ABD=19°,
∴∠AFB=180°-∠BAF-∠ABD=180°-45°-19°=116°.
故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线)与x轴交于AB两点(点A在点B的左侧),经过点A的直线ly轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC

1)直接写出点A的坐标,并求直线l的函数表达式(其中kb用含a的式子表示);

2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;

3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点ADPQ为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在某飞机场东西方向的地面l上有一长为1 km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得一架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5千米的C处.

(1)该飞机航行的速度是多少千米/小时?(结果保留根号)

(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的方程mx2xm+10,有以下三个结论:

①当m0时,方程只有一个实数解;

②当m≠0时,方程有两个不相等的实数解;

③无论m取何值,方程都有一个整数根.

(1)请你判断,这三个结论中正确的有_____(填序号)

(2)证明(1)中你认为正确的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△AOB中,∠O90°,AO18cmBO30cm,动点M从点A开始沿边AO1cm/s的速度向终点O移动,动点N从点O开始沿边OB2cm/s的速度向终点B移动,一个点到达终点时,另一个点也停止运动.如果MN两点分别从AO两点同时出发,设运动时间为ts时四边形ABNM的面积为Scm2

(1)S关于t的函数关系式,并直接写出t的取值范围;

(2)判断S有最大值还是有最小值,用配方法求出这个值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④APAD=CQCB.其中正确的是_____(写出所有正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yx22x3的图象与x轴交于AB两点,与y轴交于点C,则下列说法错误的是(  )

A. AB4

B. ABC45°

C. x0时,y<﹣3

D. x1时,yx的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是置于水平地面上的一个球形储油罐,小敏想测量它的半径、在阳光下,他测得球的影子的最远点A到球罐与地面接触点B的距离是10(如示意图,AB10);同一时刻,他又测得竖直立在地面上长为1米的竹竿的影子长为2米,那么,球的半径是________米.

查看答案和解析>>

同步练习册答案