精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y=ax2+bx+c的图象过点A(﹣1,0)和点C(0,3),对称轴为直线x=1.

(1)求该二次函数的关系式和顶点坐标;
(2)结合图象,解答下列问题:
①当﹣1<x<2时,求函数y的取值范围.
②当y<3时,求x的取值范围.

【答案】
(1)解:根据题意得 ,解得

所以二次函数关系式为y=﹣x2+2x+3,

因为y=﹣(x﹣1)2+4,

所以抛物线的顶点坐标为(1,4);


(2)解:①当x=﹣1时,y=0;x=2时,y=3;

而抛物线的顶点坐标为(1,4),且开口向下,

所以当﹣1<x<2时,0<y≤4;

②当y=3时,﹣x2+2x+3=3,解得x=0或2,

所以当y<3时,x<0或x>2.


【解析】根据图象过点A(﹣1,0)和点C(0,3),对称轴为直线x=1,代入求出二次函数的关系式,整理得到顶点式,求出抛物线的顶点坐标;(2)①当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下,得到当﹣1<x<2时,0<y≤4;②当y=3时,得到x=0或2,求出x的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AOB=30°OP平分AOBPDOBDPCOBOAC,若PC=6,则PD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市第一次用6000元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍多20件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价)

进价(/)

20

28

售价(/)

26

40

(1)该超市第一次购进甲、乙两种商品的件数分别是多少?

(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?

(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多560元,则第二次乙商品是按原价打几折销售的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把长为40cm,宽30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余的部分拆成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计)

(1)长方体盒子的长、宽、高分别为多少?(单位:cm)
(2)若折成的一个长方体盒于表面积是950cm2 , 求此时长方体盒子的体积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD∠ABC的角平分线,DE//BC,交ABE∠A=55°,∠BDC=95°,求△BDE各内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,EAC的中点,AD平分∠BAC,BA:CA=2:3,ADBE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是(  )

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有下列四个条件:①AB=BC,②∠ABC=90,③AC=BD,④ACBD.从中选取两个作为补充条件,使BCD为正方形(如图).现有下列四种选法,其中错误的是 ( )

A. ②③ B. ②④ C. ①② D. ①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在作二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象时,先列出下表:

x

﹣1

0

1

2

3

4

5

y1

0

﹣3

﹣4

﹣3

0

5

12

y2

0

2

4

6

8

10

12

请你根据表格信息回答下列问题,
(1)二次函数y1=ax2+bx+c的图象与y轴交点坐标为
(2)当y1>y2时,自变量x的取值范围是
(3)请写出二次函数y1=ax2+bx+c的三条不同的性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CDABOE平分∠AODOFOEOGCD,∠CDO50°,则下列结论:①∠AOE65°;②OF平分∠BOD;③∠GOE=∠DOF;④∠AOE=∠GOD.其中正确结论的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案