精英家教网 > 初中数学 > 题目详情
12.请你将下面的证明补充完整,并在括号内填写推理依据.
如图,点M在直线AB上,MP⊥直线CD,垂足为P,MP平分∠NMQ,∠AMN=∠BMQ.求证:AB∥CD.
证明:∵MP平分∠NMQ,
∴∠NMP=∠PMQ(角平分线的定义)
∵∠AMN=∠BMQ;∠NMP=∠PMQ,
∴∠AMN+∠NMP=∠BMQ+∠PMQ.
∵∠AMB=180°,
∴∠AMP=90°,
∵MP⊥直线CD,
∴∠MPD=90°(垂直的定义).
∴AB∥CD(内错角相等,两直线平行)

分析 先根据角平分线的定义得出∠NMP=∠PMQ,再由∠AMN=∠BMQ得出∠AMN+∠NMP=∠BMQ+∠PMQ,根据补角的定义得出∠AMP=90°,由此可得出结论.

解答 证明:∵MP平分∠NMQ,
∴∠NMP=∠PMQ(角平分线的定义).
∵∠AMN=∠BMQ;∠NMP=∠PMQ,
∴∠AMN+∠NMP=∠BMQ+∠PMQ.
∵∠AMB=180°,
∴∠AMP=90°,
∵MP⊥直线CD,
∴∠MPD=90°(垂直的定义),
∴AB∥CD(内错角相等,两直线平行).
故答案为:角平分线的定义;∠NMP,∠BMQ;垂直的定义;内错角相等,两直线平行.

点评 本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.盐城市2015年初中毕业生人数达10.1万.数据10.1万用科学记数法表示为(  )
A.1.01×10B.10.1×104C.1.01×105D.0.101×106

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.长度为2cm、3cm、6cm、7cm、8cm的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有6个.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列关系式中,正确的是(  )
A.(a+b)2=a2-2ab+b2B.(a-b)2=a2-b2C.(a+b)2=a2+b2D.(a+b)(a-b)=a2-b2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某车队要把4000吨货物运到灾区(方案制定后,每天的运货量不变).
(1)设每天运输的货物吨数n(单位:吨),求需要的天数;
(2)由于到灾区的道路受阻,实际每天比原计划少运20%,因此推迟1天完成任务,求原计划完成任务的天数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在Rt△ABC中,∠ACB=90°,AB=$\sqrt{13}$,BC=2,则这个直角三角形的面积为(  )
A.3B.6C.$\sqrt{13}$D.$\frac{1}{2}$$\sqrt{13}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,分别以直角三角形的边长为边向外作正方形P、Q、R,若正方形P、Q的面积分别是4、1,则正方形R的边长是$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如$\frac{3}{\sqrt{5}}$,$\sqrt{\frac{2}{3}}$,$\frac{2}{\sqrt{3}+1}$一样的式子,其实我们还可以将其进一步化简:
$\frac{3}{\sqrt{5}}$=$\frac{3×\sqrt{5}}{\sqrt{5}×\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$;(一)
$\sqrt{\frac{2}{3}}$=$\sqrt{\frac{2×3}{3×3}}$=$\frac{\sqrt{6}}{3}$(二)
$\frac{2}{\sqrt{3}+1}$=$\frac{2×(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3})^{2}-{1}^{2}}$=$\sqrt{3}$-1(三)
以上这种化简的步骤叫做分母有理化.
化简:$\frac{1}{{1+\sqrt{3}}}+\frac{1}{{\sqrt{3}+\sqrt{5}}}+\frac{1}{{\sqrt{5}+\sqrt{7}}}+…\frac{1}{{\sqrt{2n-1}+\sqrt{2n+1}}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.用乘法公式进行简便运算:
(1)10032; 
(2)20102-2011×2009.

查看答案和解析>>

同步练习册答案