精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点D在⊙O的直径AB延长线上,点C在⊙O上,过点DED⊥AD,与AC的延长线相交于点E,且CD=DE.

(1)求证:CD为⊙O的切线;

(2)AB=12,且BC=CE时,求BD的长.

【答案】(1)详见解析;(2)6-6.

【解析】

(1)连结0C,由AB为直径,得到∠ACB=90°,求得∠E=ABC,根据等腰三角形的性质得到∠ABC=OCB,等量代换得到∠E=OCB,推出OCCD,于是得到结论;
(2)证明OBC≌△DCE(ASA),得到OC=CD=6,根据勾股定理求出斜边的长,进而可求出BD的长.

(1)证明:连接OC,

AB为直径,

∴∠ACB=90°,

∴∠BCD+ECD=90°,

RtADERtABC中,∠E=90°-A,ABC=90°-A,

∴∠E=ABC,

OB=OC,

∴∠ABC=OCB,

∴∠E=OCB,

又∵CD=DE,

∴∠E=ECD,

∴∠OCB=ECD,

∴∠OCB+BCD=90°,即OCCD,

CD为⊙O的切线.

(2)(1)知,∠OBC=OCB=DCE=E,

OBCDCE中,

∴△OBC≌△DCE(ASA),

OC=CD=6,

RtOCD中,OC=CD=6,OCD=90°,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,的平分线与的垂直平分线交于点的延长线于点于点

1)求证:

2)求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的方程的解为整数,且不等式组无解,则这样的非负整数a有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)问题背景:如图1,在四边形ABCD中,ABAD,∠BAD120°,∠B=∠ADC90°EF分别是BCCD上的点,且∠EAF60°,请探究图中线段BEEFFD之间的数量关系是什么?

小明探究此问题的方法是:延长FD到点G,使DGBE,连结AG.先证明ABE≌△ADG,得AEAG;再由条件可得∠EAF=∠GAF,证明AEF≌△AGF,进而可得线段BEEFFD之间的数量关系是   

2)拓展应用:

如图2,在四边形ABCD中,ABAD,∠B+D180°EF分别是BCCD上的点,且∠EAFBAD.问(1)中的线段BEEFFD之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,tanA=B=45°AB=14. BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是以O为圆心的半圆的直径,半径COAO,点M上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OMCM.

(1)若半圆的半径为10.

①当∠AOM=60°时,求DM的长;

②当AM=12时,求DM的长.

(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列的网格图中.每个小正方形的边长均为1个单位,在RtABC中,∠C=90°,AC=3,BC=4.

(1)试在图中作出ABCA为旋转中心,沿顺时针方向旋转90°后的图形AB1C1

(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;

(3)根据(2)中的坐标系作出与ABC关于原点对称的图形A2B2C2,并标出B2、C2两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为10的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、
(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从乒乓球、羽毛球、篮球和排球四个方面调查了若干名学生,在还没有绘制成功的“折线统计图”与“扇形统计图”中,请你根据已提供的部分信息解答下列问题.

(1)在这次调查活动中,一共调查了 名学生,并请补全统计图.

(2)“羽毛球”所在的扇形的圆心角是 度.

(3)若该校有学生1200名,估计爱好乒乓球运动的约有多少名学生?

查看答案和解析>>

同步练习册答案