精英家教网 > 初中数学 > 题目详情

【题目】为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.

根据统计图所提供的信息,解答下列问题:

(1)本次共调查了 名市民;

(2)补全条形统计图;

(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.

【答案】(1)2000;(2)作图见解析;(3)96万

【解析】

试题分析:(1)根据“总人数=看电视人数÷看电视人数所占比例”即可算出本次共调查了多少名市民;

(2)根据“其它人数=总人数×其它人数所占比例”即可算出晚饭后选择其它的市民数,再用“锻炼人数=总人数﹣看电视人数﹣阅读人数﹣其它人数”即可算出晚饭后选择锻炼的人数,依此补充完整条形统计图即可;

(3)根据“本市选择锻炼人数=本市总人数×锻炼人数所占比例”即可得出结论.

试题解析:(1)本次共调查的人数为:800÷40%=2000,故答案为:2000.

(2)晚饭后选择其它的人数为:2000×28%=560,晚饭后选择锻炼的人数为:2000﹣800﹣240﹣560=400.

将条形统计图补充完整,如图所示.

(3)晚饭后选择锻炼的人数所占的比例为:400÷2000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).

答:该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数为96万.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,的中点,是边上一动点,连结,取的中点,连结.小梦根据学习函数的经验,对的面积与的长度之间的关系进行了探究:

1)设的长度为的面积,通过取边上的不同位置的点,经分析和计算,得到了的几组值,如下表:

0

1

2

3

4

5

6

3

1

0

2

3

根据上表可知,____________.

2)在平面直角坐标系中,画出(1)中所确定的函数的图象.

3)在(1)的条件下,令的面积为.

①用的代数式表示.

②结合函数图象.解决问题:当时,的取值范围为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是等边三角形,点在射线上,延长,使.

1)如图(1),当点为线段中点时,求证:.

2)如图(2),当点在线段的延长线上时,还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E是正方形ABCDCD边上一点,以点A为中心把△ADE顺时针旋转90°。

(1)在图中画出旋转后的图形;

(2)若旋转后E点的对应点记为M,点FBC上,且∠EAF=45°,连接EF。

①求证:△AMF≌△AEF;

②若正方形的边长为6,AE=,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大拇指与小指尽量张开时,两指尖的距离称为指距,某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得指距与身高的一组数据:

1)求出hd之间的函数关系式;

2)某人身高为196cm,一般情况下他的指距应是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在ABC中,AB=AC=9,BAC=120°,AD是ABC的中线,AE是BAD的角平分线,DFAB交AE的延长线于点F,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是等边△ABCAB边上一点,过PPE⊥ACE,在BC的延长线上截取CQ=AP,连接PQAC于点D.

(1)若∠Q=28°,求∠EPD的度数;

(2)求证:PD=QD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.

1求证:∠B=∠ACD.

2已知点E在AB上,且BC2=ABBE.

i若tan∠ACD=,BC=10,求CE的长;

ii试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).

(1)求抛物线的函数解析式.

(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点Dy轴上一点,且DC=DE,求出点D的坐标.

(3)在第二问的条件下,射线DE上是否存在点P,使得以C、D、P为顶点的三角形与△DOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案