精英家教网 > 初中数学 > 题目详情
7.如图,在△ABC中,AB=6,tan∠BAC=$\frac{3}{4}$,点P为AC边上任意一点,点Q为CA延长线上任意一点,以PB、PQ为两边作?PQDB,则对角线PD的最小值为$\frac{18}{5}$.

分析 由题意可知当PD⊥BD时,对角线PD的最小值,过点A作AE⊥BD于点E,利用平行四边形的性质和已知条件即可求出PD的长.

解答 解:由题意可知当PD⊥BD时,对角线PD的最小值,
∵四边形PQDB是平行四边形
∴PQ∥BD,
∴∠ABD=∠BAC,
∵tan∠BAC=$\frac{3}{4}$,
∴sin∠BAC=$\frac{3}{5}$=sin∠ABD,
过点A作AE⊥BD于点E,如图所示:
∴当PD最小时,PD=AE,
∴AE=AB•sin∠ABE=AB•sin∠BAC
=6×$\frac{3}{5}$=$\frac{18}{5}$,
∴对角线PD的最小值为$\frac{18}{5}$,
故答案为:$\frac{18}{5}$.

点评 本题考查了平行四边形的性质以及垂线段最短的性质,解题的关键是当PD最小时,PD=AE,求PE的长,转化为求线段AE的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.求下列各式中x的值.
(1)3x=$\frac{1}{81}$;(2)(-2)x=$\frac{1}{64}$;(3)($\frac{1}{2}$)x=16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.把下列方程改写成用含x的式子表示y的形式:
(1)2x-y=3;
(2)3x+y-1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解不等式:2+$\frac{2x-1}{3}$≤x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图①,在矩形ABCD中,将矩形折叠,使点B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”.
(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”形状是一个等腰三角形;
(2)当“折痕△BEF”的顶点E位于AD的中点时,在图(2)中,作出这个“折痕△BEF”(要求尺规作图,保留作图痕迹,并写出作法);
(3)如图③,在矩形ABCD中,若AB=2,BC=4,当“折痕△BEF”的顶点F和点C重合时,设折痕与AB交于点N,求AN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,已知AB⊥BM,AB=2,点P为射线BM上的动点,联结AP,作BH⊥AP,垂足为H,∠APM的平分线交BH的延长线于点D,联结AD.
(1)若∠BAP=30°,求∠ADP的度数;
(2)若S△ADP:S△ABP=3:2,求BP的长;
(3)若AD∥BM(如图2),求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,⊙O的直径AB=4,半径OC⊥AB,点D在弧BC上,DE⊥OC,DF⊥AB,垂足分别为E、F,则OE•OF满足(  )
A.OE•OF≤1B.OE•OF≤2C.OE•OF≤3D.OE•OF≤4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.家住滨河国际一单元的甲、乙二人同时从地下车库进入电梯回家,已知两人到1至4层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.
(1)用树状图或列表法表示(a,b)的所有可能结果,并求甲、乙二人在同一层楼出电梯的概率:
(2)小亮和小芳打赌,若甲、乙住在同层,则小亮胜,否则小芳胜.判断上述游戏是否公平?若公平,请说明理由;若不公平,请说明理由.

查看答案和解析>>

同步练习册答案