【题目】正方形中,点在边上,,,将线段绕点逆时针旋转,使点落在直线上E的点处,则的长度为______.
【答案】2或4
【解析】
根据将线段绕点逆时针旋转,使点落在直线上E的点处,可以分两种情况,一种是在线段BC上,一种是在线段BC的延长线上,然后利用已知条件求解即可.
分两种情况:
(1)当点E落在线段BC上的点F处时,
∵四边形ABCD是正方形,
∴,DA=DC=AB=BC,
∵将线段DE绕点D逆时针旋转,使点E落在直线BC上的点F处,
∴DE=DF,
∴,
∴AE=CF,
∵AE=1,
∴CF=1,
∵BA=BC,
∴BA-AE=BC-CF,即BE=BF,
∵BE=2,
∴BF=2.
(2)当点E落在线段BC的延长线上的F点处时,
∵四边形ABCD为正方形,
∴∴,DA=DC=AB=BC,
∵将线段DE绕点D逆时针旋转,使点E落在直线BC上的点F处,
∴DE=DF,
∴
∴AE=CF,
∵AE=1,
∴CF=1,
∵BE=2,
∴BA=AE+BE=1+2=3,
∴BC=3,
∴BF=BC+CF=3+1=4.
综上所述,BF的长度为2或4.
科目:初中数学 来源: 题型:
【题目】如图是二次函数b,c是常数,图象的一部分,与x轴的交点A在点和之间,对称轴是对于下列说法:;;;为实数);(5)当时,,其中正确的是( )
A.(1)(2)(4)B.(1)(2)(5)C.(2)(3)(4)D.(3)(4)(5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在⊙O 中,AB 为直径,点 P 在BA 的延长线上,PC 为⊙O 的切线,过点 A 作AH⊥PC 于点 H, 交⊙O 于点 D,连接 BC、BD、AC.
(1)如图 1,求证:∠CAH=∠CAB;
(2)如图 2,过点 C 作 CE⊥AB 于点 E,求证:BD=2CE;
(3)如图 3,在(2)的条件下,点 F 在BC 上,连接 DF、EF,若 BG=2AE,∠CFE=45°,OG=1,求线段 EF 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知二次函数y=ax2+4ax+c(a<0)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D,DH⊥x轴于H与AC交于点E.连接CD、BC、BE.若S△CBE∶S△ABE=2∶3,
(1)点A的坐标为 ,点B的坐标为 ;
(2)连结BD,是否存在数值a,使得∠CDB=∠BAC?若存在,请求出a的值;若不存在,请说明理由;
(3)若AC恰好平分∠DCB,求二次函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A按逆时针方向旋转α°.得到△ADE,连接BD,CE交于点F.
(1)求证:△ABD≌△ACE;
(2)用α表示∠ACE的度数;
(3)若使四边形ABFE是菱形,求α的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与轴交于点,与轴交于点,(点在点左侧).直线与抛物线的对称轴交于点.
(1)求抛物线的对称轴;
(2)直接写出点的坐标;
(3)点与点关于抛物线的对称轴对称,过点作轴的垂线与直线交于点,若,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,⊙M过坐标原点O且分别交x轴、y轴于点A,B,点C为第一象限内⊙M上一点.若点A(6,0),∠BCO=30°.
(1)求点B的坐标;
(2)若点D的坐标为(-2,0),试猜想直线DB与⊙M的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:
(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相同,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各种多少两?设黄金重两,每枚白银重两,根据题意可列方程组为____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com