精英家教网 > 初中数学 > 题目详情
如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=-1,且过点(-3,0),下列说法:①abc<0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(3,y2)是抛物线上两点,则y1<y2,其中说法正确的是(  )
A、①②B、②③
C、①②④D、②③④
考点:二次函数图象与系数的关系
专题:
分析:根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a-b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=2时,y>0,则得到4a+2b+c>0,则可对③进行判断;通过点(-5,y1)和点(3,y2)离对称轴的远近对④进行判断.
解答:解:∵抛物线开口向上,
∴a>0,
∵抛物线对称轴为直线x=-
b
2a
=-1,
∴b=2a>0,则2a-b=0,所以②正确;
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc<0,所以①正确;
∵x=2时,y>0,
∴4a+2b+c>0,所以③错误;
∵点(-5,y1)离对称轴的距离与点(3,y2)离对称轴的距离相等,
∴y1=y2,所以④不正确.
故选A.
点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知点I为△ABC的内心,点O为△ABC的外心.若∠BOC=100°,则∠BIC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个n边形(n≥4)木架在同一平面内不变形,至少还要再钉上几根木条?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,△ABC沿DE折叠,使得点A落在点B处,已知AC=6,BC=2,则四边形BCED的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
(1)求证:四边形ABCD是菱形.
(2)若AC=8,AB=5,求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OC是∠AOD的平分线,OE是∠BOD的平分线,∠AOB=130°.
(1)求∠COE的度数是多少?
(2)如果∠COD=20°,求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

写出一个比-1小的整数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,∠A+∠C=180°,∠B=100°,∠ADE是四边形ABCD的一个外角,则∠ADE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,M,N分别是AB,CD的中点,E,F是AC上两点,且AE=CF.
求证:四边形MFNE是平行四边形.

查看答案和解析>>

同步练习册答案