精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为15,AG=CH=12,BG=DH=9,连接GH,则线段GH的长为

【答案】3
【解析】解:如图,延长BG交CH于点E,
在△ABG和△CDH中,

∴△ABG≌△CDH(SSS),
AG2+BG2=AB2
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,

∴△ABG≌△BCE(ASA),
∴BE=AG=12,CE=BG=9,∠BEC=∠AGB=90°,
∴GE=BE﹣BG=12﹣9=3,
同理可得HE=3,
在Rt△GHE中,GH=
故答案为:3
延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明参加某网店的“翻牌抽奖”活动,如图,共有4张牌,分别对应5元,10元,15元,20元的现金优惠券,小明只能看到牌的背面.
(1)如果随机翻一张牌,那么抽中20元现金优惠券的概率是
(2)如果随机翻两张牌,且第一次翻的牌不参与下次翻牌,则所获现金优惠券的总值不低于30元的概率是多少?请画树状图或列表格说明问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.
(1)求证:AC平分∠BAD;
(2)探究线段PB,AB之间的数量关系,并说明理由;
(3)若AD=3,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为 km.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.

(1)求y关于x的函数解析式;

(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲跑步中途改为步行,到达图书馆恰好用30 min.小东骑自行车以300 m/min的速度直接回家.两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图9所示.

(1)家与图书馆之间的路程为 m,小玲步行的速度为 m/min;

(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;

(3)求两人相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)计算:(﹣1)2017+2cos45°﹣
(2)化简: ÷(1﹣ ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3若改变(2中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A为顶点的等腰ABC中,∠ABC、∠ACB的平分线相交于点D,过点D作EFBC分别交AB、AC于E、F.

(1)求证:BE=DE;

(2)若ABC的周长比AEF的周长大10,试求出BC的长度.

查看答案和解析>>

同步练习册答案